A geometric non-linear interpolatory subdivision scheme via approximation scheme

被引:0
|
作者
Zhao, Huanxi [1 ]
Xu, Lingling [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
关键词
D O I
10.1109/CADCG.2009.5246891
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we proposed a non-linear interpolatory scheme based on an approximating scheme. A key step in our subdivision scheme is that we introduce a tangent polygon of the given initial polygon, then we obtain an interpolation scheme by applying corner cutting with polyline to this tangent polygon. Numerical examples show that our approach combines the advantages of approximating subdivision schemes with the precise control of interpolatory schemes, and can avoid the potential pitfalls and unacceptable cases appeared in the traditional interpolatory subdivision scheme. The proposed scheme is convexity-preserving, the introduced free parameters are effective to the shape adjustment of the limit curve, and the limit curve is G(1) smooth.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 50 条
  • [1] Interpolatory subdivision scheme for geometric volumetric modeling
    Wang, JM
    You, F
    Luo, XN
    Xue, YY
    [J]. CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 351 - 352
  • [2] An interpolatory subdivision curves scheme via normal control
    Ding, YD
    Wei, DM
    [J]. CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 405 - 406
  • [3] A non-linear circle-preserving subdivision scheme
    Pavel Chalmovianský
    Bert Jüttler
    [J]. Advances in Computational Mathematics, 2007, 27 : 375 - 400
  • [4] A non-linear circle-preserving subdivision scheme
    Chalmoviansky, Pavel
    Juettler, Bert
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (04) : 375 - 400
  • [5] On interpolatory subdivision from approximating subdivision scheme
    Luo, Zhongxuan
    Qi, Wanfeng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 339 - 349
  • [6] Fairing geometric modeling based on 4-point interpolatory subdivision scheme
    Luo, XN
    Liu, N
    Gao, CY
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 163 (01) : 189 - 197
  • [7] ANALYTICAL APPROXIMATION FOR NON-LINEAR FBSDEs WITH PERTURBATION SCHEME
    Fujii, Masaaki
    Takahashi, Akihiko
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2012, 15 (05)
  • [8] Analysis of some bivariate non-linear interpolatory subdivision schemes
    Karine Dadourian
    Jacques Liandrat
    [J]. Numerical Algorithms, 2008, 48 : 261 - 278
  • [9] Analysis of some bivariate non-linear interpolatory subdivision schemes
    Dadourian, Karine
    Liandrat, Jacques
    [J]. NUMERICAL ALGORITHMS, 2008, 48 (1-3) : 261 - 278
  • [10] A Unified Interpolatory Subdivision Scheme for Quadrilateral Meshes
    Deng, Chongyang
    Ma, Weiyin
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (03):