A geometric non-linear interpolatory subdivision scheme via approximation scheme

被引:0
|
作者
Zhao, Huanxi [1 ]
Xu, Lingling [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
关键词
D O I
10.1109/CADCG.2009.5246891
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we proposed a non-linear interpolatory scheme based on an approximating scheme. A key step in our subdivision scheme is that we introduce a tangent polygon of the given initial polygon, then we obtain an interpolation scheme by applying corner cutting with polyline to this tangent polygon. Numerical examples show that our approach combines the advantages of approximating subdivision schemes with the precise control of interpolatory schemes, and can avoid the potential pitfalls and unacceptable cases appeared in the traditional interpolatory subdivision scheme. The proposed scheme is convexity-preserving, the introduced free parameters are effective to the shape adjustment of the limit curve, and the limit curve is G(1) smooth.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 50 条
  • [21] A New Ternary Interpolatory Subdivision Scheme for Polyhedral Meshes with Arbitrary Topology
    Zheng, Hong-Chan
    Peng, Guo-Hua
    Ye, Zheng-Lin
    Pan, Lu-Lu
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [22] Initialization and inner product computations of wavelet transform by interpolatory subdivision scheme
    Wang, YP
    Qu, RB
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) : 876 - 880
  • [23] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Bebarta, Shubhashree
    Jena, Mahendra Kumar
    [J]. CALCOLO, 2023, 60 (01)
  • [24] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Shubhashree Bebarta
    Mahendra Kumar Jena
    [J]. Calcolo, 2023, 60
  • [25] A geometric diagram and hybrid scheme for triangle subdivision
    Plaza, Angel
    Suarez, Jose P.
    Carey, Graham F.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (01) : 19 - 27
  • [26] A GEOMETRIC DIAGRAM AND HYBRID SCHEME FOR TRIANGLE SUBDIVISION
    Suarez, Jose P.
    Plaza, Angel
    Carey, Graham F.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (01): : 61 - 78
  • [27] Non-uniform interpolatory subdivision via splines
    Karciauskas, Kestutis
    Peters, Joerg
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 31 - 41
  • [28] On a nonlinear 4-point ternary and non-interpolatory subdivision scheme eliminating the Gibbs phenomenon
    Amat, S.
    Choutri, A.
    Ruiz, J.
    Zouaoui, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 16 - 26
  • [29] A NUMERICAL SCHEME FOR PROBLEMS IN NON-LINEAR OSCILLATIONS
    KIRCHGRABER, U
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1982, 9 (06) : 411 - 417
  • [30] An improved subdivision scheme for integration of approximation and interpolation
    Cao, Dansen
    Lin, Shujin
    Liu, Chengming
    Pan, Jun
    Cao, Guangyuan
    [J]. 2009 IEEE 10TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1-3: E-BUSINESS, CREATIVE DESIGN, MANUFACTURING - CAID&CD'2009, 2009, : 1220 - +