An improved subdivision scheme for integration of approximation and interpolation

被引:0
|
作者
Cao, Dansen [2 ]
Lin, Shujin [1 ,3 ]
Liu, Chengming [2 ]
Pan, Jun [2 ]
Cao, Guangyuan [4 ]
机构
[1] Sun Yat Sen Univ, Minist Educ, Key Lab Digital Life, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Community, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sch Software, Guangzhou 510275, Guangdong, Peoples R China
关键词
Interpolating subdivision; Approximating subdivision; Continuity;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a modified blending subdivision scheme achieving C-1 continuity with extensive applications. The main idea is to find the relationship between interpolating subdivision schemes and approximating subdivision schemes. We introduce a parameter to control transition from approximation to interpolation. Our method can produce a limit curve intervening between approximating and interpolating. Experiments have shown that this new scheme can solve the noticeable "shrinking effects" occurring in interpolating subdivision schemes and "popping effects" occurring in approximating schemes.
引用
收藏
页码:1220 / +
页数:3
相关论文
共 50 条
  • [1] Improved Ternary Subdivision Interpolation Scheme
    王华维
    秦开怀
    [J]. Tsinghua Science and Technology, 2005, (01) : 128 - 132
  • [2] Incenter subdivision scheme for curve interpolation
    Deng, Chongyang
    Wang, Guozhao
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (01) : 48 - 59
  • [3] A convexity preserving subdivision scheme for curve interpolation
    Deng, Chongyang
    Wang, Guozhao
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2009, 21 (08): : 1042 - 1046
  • [4] A new interpolation subdivision scheme for triangle/quad mesh
    Lin, Shujin
    Luo, Xiaonan
    Xu, Songhua
    Wang, Jianmin
    [J]. GRAPHICAL MODELS, 2013, 75 : 247 - 254
  • [5] A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL
    DYN, N
    LEVIN, D
    GREGORY, JA
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02): : 160 - 169
  • [6] A Fast and Accurate Dihedral Interpolation Loop Subdivision Scheme
    Shi, Zhuo
    An, Yalei
    Wang, Zhongshuai
    Yu, Ke
    Zhong, Si
    Lan, Rushi
    Luo, Xiaonan
    [J]. NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [7] A biarc based subdivision scheme for space curve interpolation
    Deng, Chongyang
    Ma, Weiyin
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (09) : 656 - 673
  • [8] An interpolation scheme for the approximation of dynamical systems
    Goller, B.
    Pradlwarter, H. J.
    Schueller, G. I.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 414 - 423
  • [9] Curve interpolation based on Catmull-Clark subdivision scheme
    ZHANG Jingqiao and WANG Guojin(State Key Laboratory of CAD&CG
    [J]. Progress in Natural Science:Materials International, 2003, (02) : 64 - 70
  • [10] Curve interpolation based on Catmull-Clark subdivision scheme
    Zhang, JQ
    Wang, GJ
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2003, 13 (02) : 142 - 148