A Fast and Accurate Dihedral Interpolation Loop Subdivision Scheme

被引:1
|
作者
Shi, Zhuo [1 ]
An, Yalei [1 ]
Wang, Zhongshuai [1 ]
Yu, Ke [1 ]
Zhong, Si [1 ]
Lan, Rushi [1 ]
Luo, Xiaonan [1 ]
机构
[1] Guilin Univ Elect Technol, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Triangular meshes; loop subdivision surface; interpolation; dihedral; CATMULL-CLARK; SURFACE;
D O I
10.1117/12.2303354
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interpolation by Loop's subdivision functions
    Xu, GL
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (03) : 247 - 260
  • [2] Incenter subdivision scheme for curve interpolation
    Deng, Chongyang
    Wang, Guozhao
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (01) : 48 - 59
  • [3] Improved Ternary Subdivision Interpolation Scheme
    王华维
    秦开怀
    Tsinghua Science and Technology, 2005, (01) : 128 - 132
  • [4] Loop Subdivision Surface Based Progressive Interpolation
    Fu-Hua (Frank) Cheng
    Feng-Tao Fan
    Shu-Hua Lai
    Cong-Lin Huang
    Jia-Xi Wang
    Jun-Hai Yong
    Journal of Computer Science and Technology, 2009, 24 : 39 - 46
  • [5] Loop Subdivision Surface Based Progressive Interpolation
    Cheng, Fu-Hua
    Fan, Feng-Tao
    Lai, Shu-Hua
    Huang, Cong-Lin
    Wang, Jia-Xi
    Yong, Jun-Hai
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2009, 24 (01) : 39 - 46
  • [6] Progressive interpolation using loop subdivision surfaces
    Cheng, Fuhua
    Fan, Fengtao
    Lai, Shuhua
    Huang, Conglin
    Wang, Jiaxi
    Yong, Junhai
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 526 - +
  • [7] Weighted progressive interpolation of Loop subdivision surfaces
    Deng, Chongyang
    Ma, Weiyin
    COMPUTER-AIDED DESIGN, 2012, 44 (05) : 424 - 431
  • [8] Loop Subdivision Surface Based Progressive Interpolation
    雍俊海
    Journal of Computer Science & Technology, 2009, 24 (01) : 39 - 46
  • [9] A convexity preserving subdivision scheme for curve interpolation
    Deng, Chongyang
    Wang, Guozhao
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2009, 21 (08): : 1042 - 1046
  • [10] An improved subdivision scheme for integration of approximation and interpolation
    Cao, Dansen
    Lin, Shujin
    Liu, Chengming
    Pan, Jun
    Cao, Guangyuan
    2009 IEEE 10TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1-3: E-BUSINESS, CREATIVE DESIGN, MANUFACTURING - CAID&CD'2009, 2009, : 1220 - +