A Unified Interpolatory Subdivision Scheme for Quadrilateral Meshes

被引:34
|
作者
Deng, Chongyang [1 ]
Ma, Weiyin [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 03期
关键词
Algorithms; Design; Interpolatory subdivision schemes; local refinement rules; subdivision surfaces; surface interpolation; B-SPLINE SURFACES; ARBITRARY; NONUNIFORM;
D O I
10.1145/2487228.2487231
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order C-L, except in the surface case at a limited number of extraordinary vertices where C-1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A new interpolatory subdivision for quadrilateral meshes
    Li, G
    Ma, W
    Bao, H
    [J]. COMPUTER GRAPHICS FORUM, 2005, 24 (01) : 3 - 16
  • [2] An Unified λ-subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary Regions
    Ma, Weiyin
    Wang, Xu
    Ma, Yue
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [3] An interpolatory subdivision scheme for triangular meshes and progressive transmission
    Ling, Ruotian
    Luo, Xiaonan
    Chen, Ren
    Zheng, Guifeng
    [J]. INTERACTIVE TECHNOLOGIES AND SOCIOTECHNICAL SYSTEMS, 2006, 4270 : 242 - 252
  • [4] Interpolatory subdivision scheme for triangular meshes with bounded curvature
    Computer Application Institute, Sun Yat-Sen University, Guangzhou 510275, China
    不详
    [J]. J. Inf. Comput. Sci., 2007, 2 (597-608):
  • [5] A New Ternary Interpolatory Subdivision Scheme for Polyhedral Meshes with Arbitrary Topology
    Zheng, Hong-Chan
    Peng, Guo-Hua
    Ye, Zheng-Lin
    Pan, Lu-Lu
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [6] √2 subdivision for quadrilateral meshes
    Li, GQ
    Ma, WY
    Bao, HJ
    [J]. VISUAL COMPUTER, 2004, 20 (2-3): : 180 - 198
  • [7] √2 Subdivision for quadrilateral meshes
    Guiqing Li
    Weiyin Ma
    Hujun Bao
    [J]. The Visual Computer, 2004, 20 : 180 - 198
  • [8] Ternary subdivision for quadrilateral meshes
    Ni, Tianyun
    Nasri, Ahmad H.
    Peter, Joerg
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (06) : 361 - 370
  • [9] Interpolatory, solid subdivision of unstructured hexahedral meshes
    McDonnell, KT
    Chang, YS
    Qin, H
    [J]. VISUAL COMPUTER, 2004, 20 (06): : 418 - 436
  • [10] Interpolatory, solid subdivision of unstructured hexahedral meshes
    Kevin T. McDonnell
    Yu-Sung Chang
    Hong Qin
    [J]. The Visual Computer, 2004, 20 : 418 - 436