Interpolatory, solid subdivision of unstructured hexahedral meshes

被引:0
|
作者
Kevin T. McDonnell
Yu-Sung Chang
Hong Qin
机构
[1] State University of New York at Stony Brook,Department of Computer Science
来源
The Visual Computer | 2004年 / 20卷
关键词
Subdivision algorithms; Geometric and topological representations; Solid modeling; Multiresolution models; Volumetric meshes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new, volumetric subdivision scheme for interpolation of arbitrary hexahedral meshes. To date, nearly every existing volumetric subdivision scheme is approximating, i.e., with each application of the subdivision algorithm, the geometry shrinks away from its control mesh. Often, an approximating algorithm is undesirable and inappropriate, producing unsatisfactory results for certain applications in solid modeling and engineering design (e.g., finite element meshing). We address this lack of smooth, interpolatory subdivision algorithms by devising a new scheme founded upon the concept of tri-cubic Lagrange interpolating polynomials. We show that our algorithm is a natural generalization of the butterfly subdivision surface scheme to a tri-variate, volumetric setting.
引用
收藏
页码:418 / 436
页数:18
相关论文
共 50 条
  • [1] Interpolatory, solid subdivision of unstructured hexahedral meshes
    McDonnell, KT
    Chang, YS
    Qin, H
    [J]. VISUAL COMPUTER, 2004, 20 (06): : 418 - 436
  • [2] Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications
    Xie, Jin
    Xu, Jinlan
    Dong, Zhenyu
    Xu, Gang
    Deng, Chongyang
    Mourrain, Bernard
    Zhang, Yongjie Jessica
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2020, 80
  • [3] A subdivision scheme for hexahedral meshes
    Bajaj, C
    Schaefer, S
    Warren, J
    Xu, GL
    [J]. VISUAL COMPUTER, 2002, 18 (5-6): : 343 - 356
  • [4] A subdivision scheme for hexahedral meshes
    Chandrajit Bajaj
    Scott Schaefer
    Joe Warren
    Guoliang Xu
    [J]. The Visual Computer, 2002, 18 : 343 - 356
  • [5] A new interpolatory subdivision for quadrilateral meshes
    Li, G
    Ma, W
    Bao, H
    [J]. COMPUTER GRAPHICS FORUM, 2005, 24 (01) : 3 - 16
  • [6] Volume rendering of unstructured hexahedral meshes
    Miranda, Fabio Markus
    Celes, Waldemar
    [J]. VISUAL COMPUTER, 2012, 28 (10): : 1005 - 1014
  • [7] Volume rendering of unstructured hexahedral meshes
    Fabio Markus Miranda
    Waldemar Celes
    [J]. The Visual Computer, 2012, 28 : 1005 - 1014
  • [8] A Unified Interpolatory Subdivision Scheme for Quadrilateral Meshes
    Deng, Chongyang
    Ma, Weiyin
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (03):
  • [9] Conformal refinement and coarsening of unstructured hexahedral meshes
    Benzley, SE
    Harris, NJ
    Scott, M
    Borden, M
    Owen, SJ
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2005, 5 (04) : 330 - 337
  • [10] An interpolatory subdivision scheme for triangular meshes and progressive transmission
    Ling, Ruotian
    Luo, Xiaonan
    Chen, Ren
    Zheng, Guifeng
    [J]. INTERACTIVE TECHNOLOGIES AND SOCIOTECHNICAL SYSTEMS, 2006, 4270 : 242 - 252