A Unified Interpolatory Subdivision Scheme for Quadrilateral Meshes

被引:34
|
作者
Deng, Chongyang [1 ]
Ma, Weiyin [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 03期
关键词
Algorithms; Design; Interpolatory subdivision schemes; local refinement rules; subdivision surfaces; surface interpolation; B-SPLINE SURFACES; ARBITRARY; NONUNIFORM;
D O I
10.1145/2487228.2487231
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order C-L, except in the surface case at a limited number of extraordinary vertices where C-1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Shubhashree Bebarta
    Mahendra Kumar Jena
    [J]. Calcolo, 2023, 60
  • [42] Improved Butterfly Subdivision Scheme for Meshes with Arbitrary Topology
    张辉
    马永有
    张成
    蒋寿伟
    [J]. Journal of Beijing Institute of Technology, 2005, (02) : 217 - 220
  • [43] A Finite Volume Scheme for Diffusion Equations on Distorted Quadrilateral Meshes
    Sheng, Zhiqiang
    Yuan, Guangwei
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2008, 37 (2-4): : 171 - 207
  • [44] A UNIFIED THREE POINT APPROXIMATING SUBDIVISION SCHEME
    Ghulam Mustafa
    Faheem Khan
    Muhammad Sadia Hashmi
    Muhammad Zeshan Afzal
    [J]. Analysis in Theory and Applications, 2011, 27 (01) : 10 - 20
  • [45] Interpolatory √3-subdivision
    Labsik, U
    Greiner, G
    [J]. COMPUTER GRAPHICS FORUM, 2000, 19 (03) : C131 - +
  • [46] Analysis of a New Nonlinear Interpolatory Subdivision Scheme on σ Quasi-Uniform Grids
    Ortiz, Pedro
    Carlos Trillo, Juan
    [J]. MATHEMATICS, 2021, 9 (12)
  • [47] Interpolatory subdivision schemes and wavelets
    Micchelli, CA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) : 41 - 71
  • [48] A kind of interpolatory convexity-preserving subdivision scheme for the generation of smooth curves
    Ding, YD
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 936 - 940
  • [49] Multidimensional interpolatory subdivision schemes
    Riemenschneider, SD
    Shen, ZW
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) : 2357 - 2381
  • [50] Fractal generation using ternary 5-point interpolatory subdivision scheme
    Siddiqi, Shahid S.
    Siddiqui, Saima
    Ahmad, Nadeem
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 402 - 411