Analysis of some bivariate non-linear interpolatory subdivision schemes

被引:0
|
作者
Karine Dadourian
Jacques Liandrat
机构
[1] Ecole Centrale Marseille,Laboratoire d’Analyse Topologie et Probabilités
来源
Numerical Algorithms | 2008年 / 48卷
关键词
Non-linear subdivision scheme; Bivariate subdivision scheme; Convergence; Regularity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the convergence analysis of a class of bivariate subdivision schemes that can be defined as a specific perturbation of a linear subdivision scheme. We study successively the univariate and bivariate case and apply the analysis to the so called Powerp scheme (Serna and Marquina, J Comput Phys 194:632–658, 2004).
引用
收藏
页码:261 / 278
页数:17
相关论文
共 50 条
  • [1] Analysis of some bivariate non-linear interpolatory subdivision schemes
    Dadourian, Karine
    Liandrat, Jacques
    [J]. NUMERICAL ALGORITHMS, 2008, 48 (1-3) : 261 - 278
  • [2] Interpolatory subdivision schemes
    Dyn, N
    [J]. TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 25 - 50
  • [3] A geometric non-linear interpolatory subdivision scheme via approximation scheme
    Zhao, Huanxi
    Xu, Lingling
    [J]. 2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 280 - 285
  • [4] On the regularity analysis of interpolatory Hermite subdivision schemes
    Yu, TPY
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 201 - 216
  • [5] Smoothness of non-linear and non-separable subdivision schemes
    Matei, Basarab
    Meignen, Sylvain
    Zakharova, Anastasia
    [J]. ASYMPTOTIC ANALYSIS, 2011, 74 (3-4) : 229 - 247
  • [6] A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines
    Costanza Conti
    Luca Gemignani
    Lucia Romani
    [J]. Advances in Computational Mathematics, 2013, 39 : 395 - 424
  • [7] A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines
    Conti, Costanza
    Gemignani, Luca
    Romani, Lucia
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 395 - 424
  • [8] Interpolatory subdivision schemes and wavelets
    Micchelli, CA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) : 41 - 71
  • [9] Multidimensional interpolatory subdivision schemes
    Riemenschneider, SD
    Shen, ZW
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) : 2357 - 2381
  • [10] Non-uniform interpolatory subdivision schemes with improved smoothness
    Dyn, Nira
    Hormann, Kai
    Mancinelli, Claudio
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2022, 94