A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

被引:9
|
作者
Conti, Costanza [1 ]
Gemignani, Luca [2 ]
Romani, Lucia [3 ]
机构
[1] Univ Firenze, Dipartimento Energet Sergio Stecco, I-50134 Florence, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
关键词
Interpolatory subdivision schemes; Subdivision symbols; Bezout equation; Bivariate polynomial; Matrix polynomial; Box splines; MULTIVARIATE REFINABLE FUNCTIONS;
D O I
10.1007/s10444-012-9285-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The proposed approach is based on the analysis of certain polynomial identities in two variables and leads to interesting new interpolatory bivariate subdivision schemes.
引用
收藏
页码:395 / 424
页数:30
相关论文
共 10 条