O(√log n) APPROXIMATION TO SPARSEST CUT IN (O)over-bar(n2) TIME

被引:30
|
作者
Arora, Sanjeev [1 ]
Hazan, Elad [2 ]
Kale, Satyen [3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] IBM Almaden, San Jose, CA 95120 USA
[3] Yahoo Res, Santa Clara, CA 95054 USA
关键词
graph partitioning; expander flows; multiplicative weights; CONCURRENT FLOW PROBLEM; ALGORITHMS; GRAPHS;
D O I
10.1137/080731049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper shows how to compute O(root log n)-approximations to the SPARSEST CUT and BALANCED SEPARATOR problems in (O) over tilde (n(2)) time, thus improving upon the recent algorithm of Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231]. Their algorithm uses semidefinite programming and requires (O) over tilde (n(9.5)) time. Our algorithm relies on efficiently finding expander flows in the graph and does not solve semidefinite programs. The existence of expander flows was also established by Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231].
引用
收藏
页码:1748 / 1771
页数:24
相关论文
共 50 条
  • [41] O(N2 log N) native fan-beam tomographic reconstruction
    Xiao, S
    Bresler, Y
    Munson, DC
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 824 - 827
  • [42] A Nearly Exact Propagation Algorithm for Energetic Reasoning in O(n2 log n)
    Tesch, Alexander
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 493 - 519
  • [43] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun S.
    Hasan, Masud
    Khan, Ashik Z.
    Rahman, M. Sohel
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 161 - 166
  • [44] Integer multiplication in time O(n log n)
    Harvey, David
    van der Hoeven, Joris
    ANNALS OF MATHEMATICS, 2021, 193 (02) : 563 - 617
  • [45] O(N2 log2 N) filtered backprojection reconstruction algorithm for tomography
    Basu, S
    Bresler, Y
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (10) : 1760 - 1773
  • [46] (K)over-bar N N RECONANCE (K)over-bar N N - πY N COUPLED CHANNEL FADDEEV EQUATION
    Sato, T.
    Ikeda, Y.
    MODERN PHYSICS LETTERS A, 2009, 24 (11-13) : 895 - 900
  • [47] Measurement of χcj decaying into p(n)over-barπ- and p(n)over-barπ-π0
    Ablikim, M.
    Achasov, M. N.
    Albayrak, O.
    Ambrose, D. J.
    An, F. F.
    An, Q.
    Bai, J. Z.
    Ban, Y.
    Becker, J.
    Bennett, J. V.
    Bertani, M.
    Bian, J. M.
    Boger, E.
    Bondarenko, O.
    Boyko, I.
    Briere, R. A.
    Bytev, V.
    Cai, X.
    Cakir, O.
    Calcaterra, A.
    Cao, G. F.
    Cetin, S. A.
    Chang, J. F.
    Chelkov, G.
    Chen, G.
    Chen, H. S.
    Chen, J. C.
    Chen, M. L.
    Chen, S. J.
    Chen, X.
    Chen, Y. B.
    Cheng, H. P.
    Chu, Y. P.
    Cronin-Hennessy, D.
    Dai, H. L.
    Dai, J. P.
    Dedovich, D.
    Deng, Z. Y.
    Denig, A.
    Denysenko, I.
    Destefani, M.
    Ding, W. M.
    Ding, Y.
    Dong, L. Y.
    Dong, M. Y.
    Du, S. X.
    Fang, J.
    Fang, S. S.
    Fava, L.
    Feldbauer, F.
    PHYSICAL REVIEW D, 2012, 86 (05)
  • [48] Helicity dependence of the (N)over-bar((γ)over-bar, π) N reaction channels above π-threshold
    Darwish, E. M.
    El-Zohry, M. A.
    PHYSICA SCRIPTA, 2007, 75 (05) : 738 - 746
  • [50] A pseudopolynomial time O(log n)-approximation algorithm for art gallery problems
    Deshpande, Ajay
    Kim, Taejung
    Demaine, Erik D.
    Sarma, Sanjay E.
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2007, 4619 : 163 - +