O(√log n) APPROXIMATION TO SPARSEST CUT IN (O)over-bar(n2) TIME

被引:30
|
作者
Arora, Sanjeev [1 ]
Hazan, Elad [2 ]
Kale, Satyen [3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] IBM Almaden, San Jose, CA 95120 USA
[3] Yahoo Res, Santa Clara, CA 95054 USA
关键词
graph partitioning; expander flows; multiplicative weights; CONCURRENT FLOW PROBLEM; ALGORITHMS; GRAPHS;
D O I
10.1137/080731049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper shows how to compute O(root log n)-approximations to the SPARSEST CUT and BALANCED SEPARATOR problems in (O) over tilde (n(2)) time, thus improving upon the recent algorithm of Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231]. Their algorithm uses semidefinite programming and requires (O) over tilde (n(9.5)) time. Our algorithm relies on efficiently finding expander flows in the graph and does not solve semidefinite programs. The existence of expander flows was also established by Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231].
引用
收藏
页码:1748 / 1771
页数:24
相关论文
共 50 条
  • [21] BOUNDED ORDERED DICTIONARIES IN O(LOG LOG N) TIME AND O(N) SPACE
    MEHLHORN, K
    NAHER, S
    INFORMATION PROCESSING LETTERS, 1990, 35 (04) : 183 - 189
  • [22] N(N)over-bar,(Delta)over-bar-N,Delta(N)over-bar excitation for the pion propagator in nuclear matter
    Liu, LG
    Luo, XQ
    Zhou, QF
    Chen, W
    Nakano, M
    PHYSICAL REVIEW C, 1997, 56 (02): : 800 - 803
  • [23] Connection between νn → (ν)over-bar(n)over-bar reactions and n-(n)over-bar oscillations via additional Higgs triplet bosons
    Hao, Yongliang
    PHYSICAL REVIEW D, 2020, 101 (05)
  • [24] O(log (m)over-bar. log N) routing algorithm for (2 log N-1)-stage switching networks and beyond
    Chakrabarty, Amitabha
    Collier, Martin
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (10) : 3045 - 3055
  • [25] Model of (n)over-bar annihilation in experimental searches for (n)over-bar transformations
    Golubeva, E. S.
    Barrow, J. L.
    Ladd, C. G.
    PHYSICAL REVIEW D, 2019, 99 (03)
  • [26] Study of J/ψ → p(p)over-bar and J/ψ → n(n)over-bar
    Ablikim, M.
    Achasov, M. N.
    Ambrose, D. J.
    An, F. F.
    An, Q.
    An, Z. H.
    Bai, J. Z.
    Ban, Y.
    Becker, J.
    Berger, N.
    Bertani, M.
    Bian, J. M.
    Boger, E.
    Bondarenko, O.
    Boyko, I.
    Briere, R. A.
    Bytev, V.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Chang, J. F.
    Chelkov, G.
    Chen, G.
    Chen, H. S.
    Chen, J. C.
    Chen, M. L.
    Chen, S. J.
    Chen, Y.
    Chen, Y. B.
    Cheng, H. P.
    Chu, Y. P.
    Cronin-Hennessy, D.
    Dai, H. L.
    Dai, J. P.
    Dedovich, D.
    Deng, Z. Y.
    Denig, A.
    Denysenko, I.
    Destefanis, M.
    Ding, W. M.
    Ding, Y.
    Dong, L. Y.
    Dong, M. Y.
    Du, S. X.
    Fang, J.
    Fang, S. S.
    Fava, L.
    Feldbauer, F.
    Feng, C. Q.
    Ferroli, R. B.
    PHYSICAL REVIEW D, 2012, 86 (03)
  • [27] The study of e+e- → J/ψ → N*(N)over-bar* or Λ*(Λ)over-bar*
    Ji, XB
    Yang, HX
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (08): : 1417 - 1420
  • [28] Implementations of neutron/antineutron (n/(n)over-bar) guides in experiments searching for n - (n)over-bar oscillations
    Nesvizhevsky, Valery
    Gudkov, Vladimir
    Kupryanova, Ekaterina
    Protasov, Konstantin
    Snow, Michael
    Voronin, Alexei
    PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE 2021, PANIC2021, 2021,
  • [29] An O(log n/log log n)-Approximation Algorithm for the Asymmetric Traveling Salesman Problem
    Asadpour, Arash
    Goemans, Michel X.
    Madry, Aleksander
    Gharan, Shayan Oveis
    Saberi, Amin
    OPERATIONS RESEARCH, 2017, 65 (04) : 1043 - 1061
  • [30] A simplified algorithm for the all pairs shortest path problem with O(n2 log n) expected time
    Takaoka, Tadao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (02) : 326 - 337