O(√log n) APPROXIMATION TO SPARSEST CUT IN (O)over-bar(n2) TIME

被引:30
|
作者
Arora, Sanjeev [1 ]
Hazan, Elad [2 ]
Kale, Satyen [3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] IBM Almaden, San Jose, CA 95120 USA
[3] Yahoo Res, Santa Clara, CA 95054 USA
关键词
graph partitioning; expander flows; multiplicative weights; CONCURRENT FLOW PROBLEM; ALGORITHMS; GRAPHS;
D O I
10.1137/080731049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper shows how to compute O(root log n)-approximations to the SPARSEST CUT and BALANCED SEPARATOR problems in (O) over tilde (n(2)) time, thus improving upon the recent algorithm of Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231]. Their algorithm uses semidefinite programming and requires (O) over tilde (n(9.5)) time. Our algorithm relies on efficiently finding expander flows in the graph and does not solve semidefinite programs. The existence of expander flows was also established by Arora, Rao, and Vazirani [Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pp. 222-231].
引用
收藏
页码:1748 / 1771
页数:24
相关论文
共 50 条
  • [31] An O(log n/log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem
    Asadpour, Arash
    Goemans, Michel X.
    Madry, Aleksander
    Gharan, Shayan Oveis
    Saberi, Amin
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 379 - +
  • [32] An O(n2 log n) time algorithm for computing shortest paths amidst growing discs in the plane
    Maheshwari, Anil
    Nussbaum, Doron
    Sack, Joerg-Ruediger
    Yi, Jiehua
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 668 - 680
  • [33] On-line construction of two-dimensional suffix trees in O(n2 log n) time
    Na, Joong Chae
    Giancarlo, Raffaele
    Park, Kunsoo
    ALGORITHMICA, 2007, 48 (02) : 173 - 186
  • [34] A Simpler Algorithm for the All Pairs Shortest Path Problem with O(n2 log n) Expected Time
    Takaoka, Tadao
    Hashim, Mashitoh
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT II, 2010, 6509 : 195 - 206
  • [35] On-Line Construction of Two-Dimensional Suffix Trees in O(n2 log n) Time
    Joong Chae Na
    Raffaele Giancarlo
    Kunsoo Park
    Algorithmica, 2007, 48 : 173 - 186
  • [36] Incremental discovery of the irredundant motif bases for all suffixes of a string in O(n2 log n) time
    Apostolico, Alberto
    Tagliacollo, Claudia
    THEORETICAL COMPUTER SCIENCE, 2008, 408 (2-3) : 106 - 115
  • [37] Fully Dynamic Connectivity in O(log n(log log n)2) Amortized Expected Time
    Huang, Shang-En
    Huang, Dawei
    Kopelowitz, Tsvi
    Pettie, Seth
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 510 - 520
  • [38] An O(n(3) log log n/log(2) n) time algorithm for all pairs shortest paths
    Han, Yijie
    Takaoka, Tadao
    JOURNAL OF DISCRETE ALGORITHMS, 2016, 38-41 : 9 - 19
  • [39] n(n)over-bar transitions in nuclei
    Nazaruk, VI
    PHYSICAL REVIEW C, 1998, 58 (04): : R1884 - R1888
  • [40] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun Sahariar
    Hasan, Masud
    Khan, Ashik Zinnat
    Rahman, M. Sohel
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (08) : 1007 - 1011