A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization

被引:0
|
作者
Dembele, Andre [1 ]
Ndiaye, Babacar M. [2 ]
Ouorou, Adam [3 ]
Degla, Guy [1 ]
机构
[1] Univ Abomey Calavi, Inst Math & Phys Sci, Porto Novo, Benin
[2] Univ Cheikh Anta Diop Dakar, Lab Math Decis & Numer Anal, Dakar 45087, Senegal
[3] Orange Labs Res, Ave Republ, F-92320 Chatillon, France
关键词
Proximal algorithm; Bundle method; Nonconvex optimization; Nonsmooth optimization; Reformulation;
D O I
10.1007/978-3-030-38364-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we provide an exact reformulation of Nonsmooth Constrained optimization Problems (NCP) using the Moreau-Yosida regularization. This reformulation allows the transformation of (NCP) to a sequence of convex programs of which solutions are feasible for (NCP). This sequence of solutions of auxiliary programs converges to a local solution of (NCP). Assuming Slater constraint qualification and basing on an exact penalization, our reformulation combined with a nonconvex proximal bundle method provides a local solution of (NCP). Our bundle method allows a strong update of the level set, may reduce significantly the number of null-steps and gives a new stopping criterion. Finally, numerical simulations are carried out.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
  • [21] A bundle-filter method for nonsmooth convex constrained optimization
    Elizabeth Karas
    Ademir Ribeiro
    Claudia Sagastizábal
    Mikhail Solodov
    [J]. Mathematical Programming, 2009, 116 : 297 - 320
  • [22] Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization
    Ruszczynski, Andrzej
    [J]. OPTIMIZATION LETTERS, 2020, 14 (07) : 1615 - 1625
  • [23] Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization
    Andrzej Ruszczyński
    [J]. Optimization Letters, 2020, 14 : 1615 - 1625
  • [24] A bundle-filter method for nonsmooth convex constrained optimization
    Karas, Elizabeth
    Ribeiro, Ademir
    Sagastizabal, Claudia
    Solodov, Mikhail
    [J]. MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 297 - 320
  • [25] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 501 - 535
  • [26] A BUNDLE-TYPE QUASI-NEWTON METHOD FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Tang, Chunming
    Chent, Huangyue
    Jian, Jinbao
    Liu, Shuai
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 367 - 393
  • [27] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Kaisa Joki
    Adil M. Bagirov
    Napsu Karmitsa
    Marko M. Mäkelä
    [J]. Journal of Global Optimization, 2017, 68 : 501 - 535
  • [28] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jian, Jin-bao
    Tang, Chun-ming
    Shi, Lu
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02): : 254 - 273
  • [29] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [30] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435