A BUNDLE-TYPE QUASI-NEWTON METHOD FOR NONCONVEX NONSMOOTH OPTIMIZATION

被引:0
|
作者
Tang, Chunming [1 ]
Chent, Huangyue [1 ]
Jian, Jinbao [2 ]
Liu, Shuai [3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Guangxi Univ Nationalities, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Ctr Appl Math & Artificial Intelligence, Nanning 530006, Peoples R China
[3] South China Normal Univ, Sch Software, Nanhai Campus, Foshan 528225, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2022年 / 18卷 / 02期
基金
中国国家自然科学基金;
关键词
nonconvex nonsmooth optimization; proximal bundle method; quasi-Newton method; global convergence; superlinear convergence; ALTERNATING LINEARIZED MINIMIZATION; STOCHASTIC SUBGRADIENT METHOD; CONVEX; ALGORITHM; VERSION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a bundle-type quasi-Newton method for minimizing a nonconvex nonsmooth function. The method is based on the redistributed bundle method with an on-the-fly convexification technique. At each iteration, the convexification parameter and the prox-parameter are suitably modified to guarantee that the proximal point of a piecewise affine model of a local convexification function approximates well-enough the proximal point of the objective function f at x(k). A quasi-Newton procedure is added at the end of each serious step. Specifically, we construct a suitable search direction d(k) via the BFGS update and monitor the reduction in the norm of the approximate subgradient to recognize whether an Armijo-type line search on f should be executed. Global convergence of the algorithm is established in the sense that there exists an accumulation point of the serious iterations such that it is a stationary point of f. Superlinear convergence is proved under suitable assumptions. Preliminary numerical results are reported to illustrate that the method is efficient and has advantages over the redistributed bundle method.
引用
收藏
页码:367 / 393
页数:27
相关论文
共 50 条
  • [1] An Approximate Quasi-Newton Bundle-Type Method for Nonsmooth Optimization
    Shen, Jie
    Pang, Li-Ping
    Li, Dan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [2] Quasi-Newton bundle-type methods for nondifferentiable convex optimization
    Mifflin, R
    Sun, DF
    Qi, LQ
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) : 583 - 603
  • [3] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Minghan Yang
    Andre Milzarek
    Zaiwen Wen
    Tong Zhang
    [J]. Mathematical Programming, 2022, 194 : 257 - 303
  • [4] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Yang, Minghan
    Milzarek, Andre
    Wen, Zaiwen
    Zhang, Tong
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 257 - 303
  • [5] A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees
    Curtis F.E.
    Que X.
    [J]. Mathematical Programming Computation, 2015, 7 (4) : 399 - 428
  • [6] STOCHASTIC QUASI-NEWTON METHOD FOR NONCONVEX STOCHASTIC OPTIMIZATION
    Wang, Xiao
    Ma, Shiqian
    Goldfarb, Donald
    Liu, Wei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 927 - 956
  • [7] A DIRECT SEARCH QUASI-NEWTON METHOD FOR NONSMOOTH UNCONSTRAINED OPTIMIZATION
    Price, C. J.
    [J]. ANZIAM JOURNAL, 2017, 59 (02): : 215 - 231
  • [8] Nonsmooth optimization via quasi-Newton methods
    Adrian S. Lewis
    Michael L. Overton
    [J]. Mathematical Programming, 2013, 141 : 135 - 163
  • [9] Nonsmooth optimization via quasi-Newton methods
    Lewis, Adrian S.
    Overton, Michael L.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 135 - 163
  • [10] A bundle-type method for nonsmooth DC programs
    Kanzow, Christian
    Neder, Tanja
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (02) : 285 - 326