A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization

被引:4
|
作者
Jian, Jin-bao [1 ,2 ]
Tang, Chun-ming [1 ]
Shi, Lu [3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Guangxi Univ Nationalities, Coll Sci, Nanning 530007, Peoples R China
[3] Guangxi Univ, Xingjian Coll Sci & Liberal Arts, Nanning 530005, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
nonsmooth optimization; feasible point method; bundle modification; global convergence; NONDIFFERENTIABLE MINIMIZATION; INEXACT ORACLES; ALGORITHM; NONCONVEX; PARAMETER; STRATEGY; FILTER;
D O I
10.1007/s10255-018-0755-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.
引用
收藏
页码:254 / 273
页数:20
相关论文
共 50 条
  • [1] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jin-bao JIAN
    Chun-ming TANG
    Lu SHI
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 254 - 273
  • [2] A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
    Jin-bao Jian
    Chun-ming Tang
    Lu Shi
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 254 - 273
  • [3] A bundle-filter method for nonsmooth convex constrained optimization
    Elizabeth Karas
    Ademir Ribeiro
    Claudia Sagastizábal
    Mikhail Solodov
    [J]. Mathematical Programming, 2009, 116 : 297 - 320
  • [4] A bundle-filter method for nonsmooth convex constrained optimization
    Karas, Elizabeth
    Ribeiro, Ademir
    Sagastizabal, Claudia
    Solodov, Mikhail
    [J]. MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 297 - 320
  • [5] A new restricted memory level bundle method for constrained convex nonsmooth optimization
    Tang, Chunming
    Li, Yanni
    Jian, Jinbao
    Zheng, Haiyan
    [J]. OPTIMIZATION LETTERS, 2022, 16 (08) : 2405 - 2434
  • [6] A new restricted memory level bundle method for constrained convex nonsmooth optimization
    Chunming Tang
    Yanni Li
    Jinbao Jian
    Haiyan Zheng
    [J]. Optimization Letters, 2022, 16 : 2405 - 2434
  • [7] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [8] A feasible directions method for nonsmooth convex optimization
    José Herskovits
    Wilhelm P. Freire
    Mario Tanaka Fo
    Alfredo Canelas
    [J]. Structural and Multidisciplinary Optimization, 2011, 44 : 363 - 377
  • [9] Bundle Method for Nonconvex Nonsmooth Constrained Optimization
    Minh Ngoc Dao
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1061 - 1090
  • [10] An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter
    Sagastizábal, C
    Solodov, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) : 146 - 169