Improving Agricultural Management in a Large-Scale Paddy Field by Using Remotely Sensed Data in the Ceres-Rice Model

被引:3
|
作者
Rezaei, Mojtaba [1 ]
Shahnazari, Ali [1 ]
Sarjaz, Mahmoud Raeini [1 ]
Vazifedoust, Majid [1 ]
机构
[1] Sari Univ Agr Sci & Nat Resources, Sari, Iran
关键词
assimilation; CERES-Rice; Landsat; large scale; grande echelle; SYSTEMS; YIELD;
D O I
10.1002/ird.1961
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Compared to the small-scale situation, some constraints in large-scale rice fields have caused crop growth models to fail to reach an acceptable estimate of yield. This study was conducted to investigate the possibility of enhancing the accuracy of the CERES-Rice model prediction at a large scale through the use of Landsat 5 satellite imagery (termed assimilation'). Firstly, the model was calibrated by data taken from local research. The model accuracy was then evaluated in 110 paddy fields over 26 000ha (method A). Then the model was recalibrated by paddy yield estimated from Landsat 5 image (method B). The two methods were compared based on their results. The results revealed that RMSEn in simulating grain yield in small-scale field experiments on the Hashemi cultivar for calibration and validation of the model were 9 and 8%, respectively (R-2=0.7), which indicated the model's high accuracy in yield prediction. While RMSEn in simulating grain yield in large-scale (methods A) was 22% (R-2=0.54), the use of Landsat images in the assimilation method (method B) increased its accuracy dramatically to RMSEn of 12.7% (R-2=0.72). Copyright (c) 2016 John Wiley & Sons, Ltd. Resume Par comparaison a ce qui est obtenu a petite echelle, les modeles de croissance des cultures appliques a grande echelle peinent a estimer de facon acceptable le rendement. Cette etude a ete menee afin d'evaluer la possibilite d'accroitre l'exactitude de modele CERES-Rice a grande echelle par l'assimilation d'images du satellite LANDSAT 5. Tout d'abord, le modele a ete calibre par des donnees acquises d'une recherche locale. La precision du modele a ensuite ete evaluee dans 110 rizieres sur environ 26000ha (methode A). Ensuite, le modele a ete recalibre par le rendement estime a partir d'images LANDSAT 5 (methode B). Les resultats obtenus par les deux methodes ont ete compares. Les resultats ont revele que les RMSEn des simulations en grains de la variete Hashemi dans l'experience sur le terrain a petite echelle etaient pour la calibration et la validation de 9 et 8%, respectivement (R-2=0,7), ce qui indique une excellente precision de modele dans la prevision de rendement. Le RMSEn pour simuler le rendement en grains a grande echelle (methode A) etait de 22% (R-2=0.54), montrant que l'assimilation d'image satellite (methode B) a augmente de facon spectaculaire l'exactitude a une RMSEn de 12.7% (R-2=0,72). Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:224 / 228
页数:5
相关论文
共 50 条
  • [41] High Fidelity DSRC Receiver Model for ns-3 Simulation Using Large-scale Field Data
    Gani, S. M. Osman
    Tahmasbi-Sarvestani, Amin
    Fanaei, Mohammad
    Fallah, Yaser P.
    2016 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 2016,
  • [42] Implications of water management on methane emissions and grain yield in paddy rice: A case study under subtropical conditions in Brazil using the CSM-CERES-Rice model
    da Silva, Evandro H. Figueiredo Moura
    Hoogenboom, Gerrit
    Boote, Kenneth J.
    Cuadra, Santiago Vianna
    Porter, Cheryl H.
    Scivittaro, Walkyria Bueno
    Steinmetz, Silvio
    Cerri, Carlos E. Pellegrino
    AGRICULTURAL WATER MANAGEMENT, 2025, 307
  • [43] HiPerData: An Autonomous Large-Scale Model Building and Management Platform for Big Data Analytics
    Duan, Rubing
    Goh, Rick Siow Mong
    Yang, Feng
    Di Shang, Richard
    Liu, Yong
    Li, Zengxiang
    Wang, Long
    Lu, Sifei
    Yang, Xulei
    Qin, Zheng
    PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 449 - 454
  • [44] Effect of Large-Scale Paddy Rice Drying Process Using Hot Air Combined with Radio Frequency Heating on Milling and Cooking Qualities of Milled Rice
    Chitsuthipakorn, Karn
    Thanapornpoonpong, Sa-Nguansak
    FOODS, 2022, 11 (04)
  • [45] Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data
    Zhang, Fan
    Dai, Juchuan
    Liu, Deshun
    Li, Linxing
    Long, Xin
    ENERGIES, 2019, 12 (03)
  • [46] IMPROVING AUTOMATIC DRUM TRANSCRIPTION USING LARGE-SCALE AUDIO-TO-MIDI ALIGNED DATA
    Wei, I-Chieh
    Wu, Chih-Wei
    Su, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 246 - 250
  • [47] PADDY RICE FIELD EXTRACTION USING ALOS-2 PALSAR-2 FULL POLARIMETRIC DATA WITH AGRICULTURAL PARCEL VECTOR DATA
    Yonezawa, Chinatsu
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5296 - 5299
  • [48] Interaction and Engagement with an Anxiety Management App: Analysis Using Large-Scale Behavioral Data
    Matthews, Paul
    Topham, Phil
    Caleb-Solly, Praminda
    JMIR MENTAL HEALTH, 2018, 5 (04):
  • [49] Conceptual Data Modeling Using Aggregates to Ensure Large-Scale Distributed Data Management Systems Security
    Poltavtseva, Maria A.
    Kalinin, Maxim O.
    INTELLIGENT DISTRIBUTED COMPUTING XIII, 2020, 868 : 41 - 47
  • [50] Diagnosis of cirrus cloud occurrence using large-scale analysis data and a cloud-scale model
    Cautenet, G
    Gbe, D
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1996, 14 (07): : 753 - 766