Improving Agricultural Management in a Large-Scale Paddy Field by Using Remotely Sensed Data in the Ceres-Rice Model

被引:3
|
作者
Rezaei, Mojtaba [1 ]
Shahnazari, Ali [1 ]
Sarjaz, Mahmoud Raeini [1 ]
Vazifedoust, Majid [1 ]
机构
[1] Sari Univ Agr Sci & Nat Resources, Sari, Iran
关键词
assimilation; CERES-Rice; Landsat; large scale; grande echelle; SYSTEMS; YIELD;
D O I
10.1002/ird.1961
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Compared to the small-scale situation, some constraints in large-scale rice fields have caused crop growth models to fail to reach an acceptable estimate of yield. This study was conducted to investigate the possibility of enhancing the accuracy of the CERES-Rice model prediction at a large scale through the use of Landsat 5 satellite imagery (termed assimilation'). Firstly, the model was calibrated by data taken from local research. The model accuracy was then evaluated in 110 paddy fields over 26 000ha (method A). Then the model was recalibrated by paddy yield estimated from Landsat 5 image (method B). The two methods were compared based on their results. The results revealed that RMSEn in simulating grain yield in small-scale field experiments on the Hashemi cultivar for calibration and validation of the model were 9 and 8%, respectively (R-2=0.7), which indicated the model's high accuracy in yield prediction. While RMSEn in simulating grain yield in large-scale (methods A) was 22% (R-2=0.54), the use of Landsat images in the assimilation method (method B) increased its accuracy dramatically to RMSEn of 12.7% (R-2=0.72). Copyright (c) 2016 John Wiley & Sons, Ltd. Resume Par comparaison a ce qui est obtenu a petite echelle, les modeles de croissance des cultures appliques a grande echelle peinent a estimer de facon acceptable le rendement. Cette etude a ete menee afin d'evaluer la possibilite d'accroitre l'exactitude de modele CERES-Rice a grande echelle par l'assimilation d'images du satellite LANDSAT 5. Tout d'abord, le modele a ete calibre par des donnees acquises d'une recherche locale. La precision du modele a ensuite ete evaluee dans 110 rizieres sur environ 26000ha (methode A). Ensuite, le modele a ete recalibre par le rendement estime a partir d'images LANDSAT 5 (methode B). Les resultats obtenus par les deux methodes ont ete compares. Les resultats ont revele que les RMSEn des simulations en grains de la variete Hashemi dans l'experience sur le terrain a petite echelle etaient pour la calibration et la validation de 9 et 8%, respectivement (R-2=0,7), ce qui indique une excellente precision de modele dans la prevision de rendement. Le RMSEn pour simuler le rendement en grains a grande echelle (methode A) etait de 22% (R-2=0.54), montrant que l'assimilation d'image satellite (methode B) a augmente de facon spectaculaire l'exactitude a une RMSEn de 12.7% (R-2=0,72). Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:224 / 228
页数:5
相关论文
共 50 条
  • [31] The Influence of Large-Scale Agricultural Land Management on the Modernization of Agricultural Product Circulation: Based on Field Investigation and Empirical Study
    Li, Chaofan
    Guo, Guanqing
    SUSTAINABILITY, 2022, 14 (21)
  • [32] Management of a large-scale murine genetics facility using integrated data management systems
    Wiler, Rhonda
    Asghari, Vida
    Bierwagen, Erik
    TRANSGENIC RESEARCH, 2011, 20 (05) : 1188 - 1188
  • [33] Production efficiency and effect of water management on rice yield in Japan: two-stage DEA model on 110 paddy fields of a large-scale farm
    Dongpo Li
    Teruaki Nanseki
    Yosuke Chomei
    Shuichi Yokota
    Paddy and Water Environment, 2018, 16 : 643 - 654
  • [34] Large-Scale Data Management System Using Data De-duplication System
    Abirami, S.
    Vikraman, Rashmi
    Murugappan, S.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 225 - 234
  • [35] Production efficiency and effect of water management on rice yield in Japan: two-stage DEA model on 110 paddy fields of a large-scale farm
    Li, Dongpo
    Nanseki, Teruaki
    Chomei, Yosuke
    Yokota, Shuichi
    PADDY AND WATER ENVIRONMENT, 2018, 16 (04) : 643 - 654
  • [36] No evidence for decision fatigue using large-scale field data from healthcare
    David Andersson
    Malou Lindberg
    Gustav Tinghög
    Emil Persson
    Communications Psychology, 3 (1):
  • [37] Rice yield responses in Bangladesh to large-scale atmospheric oscillation using multifactorial model
    Ghose, Bonosri
    Islam, Abu Reza Md. Towfiqul
    Salam, Roquia
    Shahid, Shamsuddin
    Kamruzzaman, Mohammad
    Das, Samiran
    Elbeltagi, Ahmed
    Salam, Mohammed Abdus
    Mallick, Javed
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 146 (1-2) : 29 - 44
  • [38] Rice yield responses in Bangladesh to large-scale atmospheric oscillation using multifactorial model
    Bonosri Ghose
    Abu Reza Md. Towfiqul Islam
    Roquia Salam
    Shamsuddin Shahid
    Mohammad Kamruzzaman
    Samiran Das
    Ahmed Elbeltagi
    Mohammed Abdus Salam
    Javed Mallick
    Theoretical and Applied Climatology, 2021, 146 : 29 - 44
  • [39] Partition Selection for Large-Scale Data Management Using KNN Join Processing
    Hu, Yue
    Peng, Ge
    Wang, Zehua
    Cui, Yanrong
    Qin, Hang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [40] Developing a Spatial Emission Inventory of Agricultural Machinery in Croatia by Using Large-Scale Survey Data
    Loncarevic, Simun
    Ilincic, Petar
    Lulic, Zoran
    Kozarac, Darko
    AGRICULTURE-BASEL, 2022, 12 (11):