Improving Agricultural Management in a Large-Scale Paddy Field by Using Remotely Sensed Data in the Ceres-Rice Model

被引:3
|
作者
Rezaei, Mojtaba [1 ]
Shahnazari, Ali [1 ]
Sarjaz, Mahmoud Raeini [1 ]
Vazifedoust, Majid [1 ]
机构
[1] Sari Univ Agr Sci & Nat Resources, Sari, Iran
关键词
assimilation; CERES-Rice; Landsat; large scale; grande echelle; SYSTEMS; YIELD;
D O I
10.1002/ird.1961
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Compared to the small-scale situation, some constraints in large-scale rice fields have caused crop growth models to fail to reach an acceptable estimate of yield. This study was conducted to investigate the possibility of enhancing the accuracy of the CERES-Rice model prediction at a large scale through the use of Landsat 5 satellite imagery (termed assimilation'). Firstly, the model was calibrated by data taken from local research. The model accuracy was then evaluated in 110 paddy fields over 26 000ha (method A). Then the model was recalibrated by paddy yield estimated from Landsat 5 image (method B). The two methods were compared based on their results. The results revealed that RMSEn in simulating grain yield in small-scale field experiments on the Hashemi cultivar for calibration and validation of the model were 9 and 8%, respectively (R-2=0.7), which indicated the model's high accuracy in yield prediction. While RMSEn in simulating grain yield in large-scale (methods A) was 22% (R-2=0.54), the use of Landsat images in the assimilation method (method B) increased its accuracy dramatically to RMSEn of 12.7% (R-2=0.72). Copyright (c) 2016 John Wiley & Sons, Ltd. Resume Par comparaison a ce qui est obtenu a petite echelle, les modeles de croissance des cultures appliques a grande echelle peinent a estimer de facon acceptable le rendement. Cette etude a ete menee afin d'evaluer la possibilite d'accroitre l'exactitude de modele CERES-Rice a grande echelle par l'assimilation d'images du satellite LANDSAT 5. Tout d'abord, le modele a ete calibre par des donnees acquises d'une recherche locale. La precision du modele a ensuite ete evaluee dans 110 rizieres sur environ 26000ha (methode A). Ensuite, le modele a ete recalibre par le rendement estime a partir d'images LANDSAT 5 (methode B). Les resultats obtenus par les deux methodes ont ete compares. Les resultats ont revele que les RMSEn des simulations en grains de la variete Hashemi dans l'experience sur le terrain a petite echelle etaient pour la calibration et la validation de 9 et 8%, respectivement (R-2=0,7), ce qui indique une excellente precision de modele dans la prevision de rendement. Le RMSEn pour simuler le rendement en grains a grande echelle (methode A) etait de 22% (R-2=0.54), montrant que l'assimilation d'image satellite (methode B) a augmente de facon spectaculaire l'exactitude a une RMSEn de 12.7% (R-2=0,72). Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:224 / 228
页数:5
相关论文
共 50 条
  • [21] Learning to predict large-scale coral bleaching from past events: A Bayesian approach using remotely sensed data, in-situ data, and environmental proxies
    Scott Wooldridge
    Terry Done
    Coral Reefs, 2004, 23 : 96 - 108
  • [22] Segmentation of large-scale remotely sensed images on a Spark platform: A strategy for handling massive image tiles with the MapReduce model
    Wang, Ning
    Chen, Fang
    Yu, Bo
    Qin, Yuchu
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 : 137 - 147
  • [23] Learning to predict large-scale coral bleaching from past events: A Bayesian approach using remotely sensed data, in-situ data, and environmental proxies
    Wooldridge, S
    Done, T
    CORAL REEFS, 2004, 23 (01) : 96 - 108
  • [24] Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach
    Iizumi, Toshichika
    Yokozawa, Masayuki
    Nishimori, Motoki
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (02) : 333 - 348
  • [25] SEBAL model with remotely sensed data to improve water-resources management under actual field conditions
    Bastiaanssen, WGM
    Noordman, EJM
    Pelgrum, H
    Davids, G
    Thoreson, BP
    Allen, RG
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2005, 131 (01) : 85 - 93
  • [26] Assimilation of Remotely-Sensed LAI into WOFOST Model with the SUBPLEX Algorithm for Improving the Field-Scale Jujube Yield Forecasts
    Bai, Tiecheng
    Wang, Shanggui
    Meng, Wenbo
    Zhang, Nannan
    Wang, Tao
    Chen, Youqi
    Mercatoris, Benoit
    REMOTE SENSING, 2019, 11 (16)
  • [27] FEM-GIS based channel network model for runoff simulation in agricultural watersheds using remotely sensed data
    Reddy, K. Venkata
    Eldho, T. I.
    Rao, E. P.
    Kulkarni, A. T.
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2011, 9 (01) : 17 - 30
  • [28] Monitoring evapotranspiration at landscape scale in Mexico: applying the energy balance model using remotely-sensed data
    Coronel, Claudia
    Rosales, Edgar
    Mora, Franz
    Lopez-Caloca, Alejandra A.
    Tapia-Silva, Felipe-Omar
    Hernandez, Gilberto
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY X, 2008, 7104
  • [29] CLUST - Grouping Aware Data Placement for Improving the Performance of Large-Scale Data Management System
    Vengadeswaran, Shanmugasundaram
    Balasundaram, Sadhu Ramakrishnan
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 1 - 9
  • [30] Improving Jujube Fruit Tree Yield Estimation at the Field Scale by Assimilating a Single Landsat Remotely-Sensed LAI into the WOFOST Model
    Bai, Tiecheng
    Zhang, Nannan
    Mercatoris, Benoit
    Chen, Youqi
    REMOTE SENSING, 2019, 11 (09)