Improving Agricultural Management in a Large-Scale Paddy Field by Using Remotely Sensed Data in the Ceres-Rice Model

被引:3
|
作者
Rezaei, Mojtaba [1 ]
Shahnazari, Ali [1 ]
Sarjaz, Mahmoud Raeini [1 ]
Vazifedoust, Majid [1 ]
机构
[1] Sari Univ Agr Sci & Nat Resources, Sari, Iran
关键词
assimilation; CERES-Rice; Landsat; large scale; grande echelle; SYSTEMS; YIELD;
D O I
10.1002/ird.1961
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Compared to the small-scale situation, some constraints in large-scale rice fields have caused crop growth models to fail to reach an acceptable estimate of yield. This study was conducted to investigate the possibility of enhancing the accuracy of the CERES-Rice model prediction at a large scale through the use of Landsat 5 satellite imagery (termed assimilation'). Firstly, the model was calibrated by data taken from local research. The model accuracy was then evaluated in 110 paddy fields over 26 000ha (method A). Then the model was recalibrated by paddy yield estimated from Landsat 5 image (method B). The two methods were compared based on their results. The results revealed that RMSEn in simulating grain yield in small-scale field experiments on the Hashemi cultivar for calibration and validation of the model were 9 and 8%, respectively (R-2=0.7), which indicated the model's high accuracy in yield prediction. While RMSEn in simulating grain yield in large-scale (methods A) was 22% (R-2=0.54), the use of Landsat images in the assimilation method (method B) increased its accuracy dramatically to RMSEn of 12.7% (R-2=0.72). Copyright (c) 2016 John Wiley & Sons, Ltd. Resume Par comparaison a ce qui est obtenu a petite echelle, les modeles de croissance des cultures appliques a grande echelle peinent a estimer de facon acceptable le rendement. Cette etude a ete menee afin d'evaluer la possibilite d'accroitre l'exactitude de modele CERES-Rice a grande echelle par l'assimilation d'images du satellite LANDSAT 5. Tout d'abord, le modele a ete calibre par des donnees acquises d'une recherche locale. La precision du modele a ensuite ete evaluee dans 110 rizieres sur environ 26000ha (methode A). Ensuite, le modele a ete recalibre par le rendement estime a partir d'images LANDSAT 5 (methode B). Les resultats obtenus par les deux methodes ont ete compares. Les resultats ont revele que les RMSEn des simulations en grains de la variete Hashemi dans l'experience sur le terrain a petite echelle etaient pour la calibration et la validation de 9 et 8%, respectivement (R-2=0,7), ce qui indique une excellente precision de modele dans la prevision de rendement. Le RMSEn pour simuler le rendement en grains a grande echelle (methode A) etait de 22% (R-2=0.54), montrant que l'assimilation d'image satellite (methode B) a augmente de facon spectaculaire l'exactitude a une RMSEn de 12.7% (R-2=0,72). Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:224 / 228
页数:5
相关论文
共 50 条
  • [1] Improving High-Latitude Rice Nitrogen Management with the CERES-Rice Crop Model
    Zhang, Jing
    Miao, Yuxin
    Batchelor, William D.
    Lu, Junjun
    Wang, Hongye
    Kang, Shujiang
    AGRONOMY-BASEL, 2018, 8 (11):
  • [2] Improving the catchment scale wetland modeling using remotely sensed data
    Lee, S.
    Yeo, I-Y
    Lang, M. W.
    McCarty, G. W.
    Sadeghi, A. M.
    Sharifi, A.
    Jin, H.
    Liu, Y.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 122
  • [3] Lithological and geomorphological large-scale mapping using remotely sensed data, GIS and terrain analysis
    Wolk-Musial, E
    Zagajewski, B
    REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 501 - 508
  • [4] Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data
    Gilardelli, Carlo
    Stella, Tommaso
    Confalonieri, Roberto
    Ranghetti, Luigi
    Campos-Taberner, Manuel
    Javier Garcia-Haro, Franciso
    Boschetti, Mirco
    EUROPEAN JOURNAL OF AGRONOMY, 2019, 103 : 108 - 116
  • [5] Paddy rice mapping of the Caspian Sea coast using microwave and optical remotely sensed data
    Firouzabadi, Parviz Zeaiean
    Sadidy, Javad
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359
  • [6] QUANTITATIVE MODELING OF SOIL EROSION BY WATER IN LARGE-SCALE RIVER BASIN USING REMOTELY SENSED DATA
    Zhu, Qiang
    Chen, Xiuwan
    Fan, Qixiang
    Jin, Heping
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3845 - 3848
  • [7] An automatic water management system for large-scale rice paddy fields
    Sekozawa, Teruji
    WSEAS Transactions on Systems and Control, 2010, 5 (10): : 824 - 834
  • [8] A Map-Reduce-enabled SOLAP cube for large-scale remotely sensed data aggregation
    Li, Jiyuan
    Meng, Lingkui
    Wang, Frank Z.
    Zhang, Wen
    Cai, Yang
    COMPUTERS & GEOSCIENCES, 2014, 70 : 110 - 119
  • [9] Data Mining of Remotely-Sensed Rainfall for a Large-Scale Rain Gauge Network Design
    Liu, Zhenzhen
    Wang, Huimin
    Huang, Jing
    Zhuo, Lu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12300 - 12311
  • [10] In-season calibration of the CERES-Rice model using proximal active canopy sensing data for yield prediction
    Zha, H.
    Lu, J.
    Li, Y.
    Miao, Y.
    Kusnierek, K.
    Batchelor, W. D.
    PRECISION AGRICULTURE'21, 2021, : 927 - 932