Recursive asymmetric kernel density estimation for nonnegative data

被引:6
|
作者
Kakizawa, Yoshihide [1 ]
机构
[1] Hokkaido Univ, Fac Econ, Sapporo, Hokkaido, Japan
基金
日本学术振兴会;
关键词
Nonparametric density estimation; boundary bias problem; asymmetric kernel; recursive estimator; STOCHASTIC-APPROXIMATION METHOD; BIAS;
D O I
10.1080/10485252.2021.1928120
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recursive nonparametric density estimation for nonnegative data is considered, using an asymmetric kernel with nonnegative support. It has a computational advantage in a situation where a huge number of data are sequentially collected. The recursive asymmetric kernel estimator keeps desirable asymptotic properties similar to the ordinary non-recursive asymmetric kernel estimator. Also, simulation studies and a real data analysis are performed for illustration.
引用
收藏
页码:197 / 224
页数:28
相关论文
共 50 条