selection biased sample;
nonparametric maximum likelihood estimator;
kernel density estimator;
optimal kernels;
bandwidth;
D O I:
10.1016/S0167-7152(96)00205-2
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper considers the effects of kernel choices on the large sample behaviors of a class of kernel estimates of the underlying density function f(x) when s independent selection biased samples are observed. Under the popular twice differentiable assumption on f, the main results show that, contrary to the well-known results in i.i.d. direct samples, the choices of kernels are important and the optimal kernels may be asymmetric and discontinuous when the weight functions of the biased samples have jumps.
机构:
Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, E-15782 Santiago De Compostela, Spain
Borrajo, M. I.
Gonzalez-Manteiga, W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, E-15782 Santiago De Compostela, Spain
Gonzalez-Manteiga, W.
Martinez-Miranda, M. D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Cass Business Sch City, London, EnglandUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, E-15782 Santiago De Compostela, Spain