Interactive Visualization of Streaming Data with Kernel Density Estimation

被引:0
|
作者
Lampe, Ove Daae [1 ]
Hauser, Helwig [1 ]
机构
[1] Univ Bergen, N-5020 Bergen, Norway
关键词
I.3.3 [Computing Methodologies]: Computer Graphics; Picture/Image Generation G.3 [Mathematics of Computing]: Probability and Statistics; Time series analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss the extension and integration of the statistical concept of Kernel Density Estimation (KDE) in a scatterplot-like visualization for dynamic data at interactive rates. We present a line kernel for representing streaming data, we discuss how the concept of KDE can be adapted to enable a continuous representation of the distribution of a dependent variable of a 2D domain. We propose to automatically adapt the kernel bandwith of KDE to the viewport settings, in an interactive visualization environment that allows zooming and panning. We also present a GPU-based realization of KDE that leads to interactive frame rates, even for comparably large datasets. Finally, we demonstrate the usefulness of our approach in the context of three application scenarios - one studying streaming ship traffic data, another one from the oil & gas domain, where process data from the operation of an oil rig is streaming in to an on-shore operational center, and a third one studying commercial air traffic in the US spanning 1987 to 2008.
引用
下载
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [1] Interactive visualization of streaming text data with dynamic maps
    Gansner, Emden R.
    Hu, Yifan
    North, Stephen
    Journal of Graph Algorithms and Applications, 2013, 17 (04) : 515 - 540
  • [2] Online kernel density estimation for interactive learning
    Kristan, M.
    Skocaj, D.
    Leonardis, A.
    IMAGE AND VISION COMPUTING, 2010, 28 (07) : 1106 - 1116
  • [3] Sub-linear RACE Sketches for Approximate Kernel Density Estimation on Streaming Data
    Coleman, Benjamin
    Shrivastava, Anshumali
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1739 - 1749
  • [4] Interactive Visualization of High Density Streaming Points with Heat-map
    Li, Chenhui
    Baciu, George
    Han, Yu
    2014 INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), 2014,
  • [5] Kernel density estimation for hierarchical data
    Wilson, Christopher M.
    Gerard, Patrick
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1495 - 1512
  • [6] Kernel density estimation with bounded data
    Kang, Young-Jin
    Noh, Yoojeong
    Lim, O-Kaung
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (01) : 95 - 113
  • [7] Kernel density estimation with bounded data
    Young-Jin Kang
    Yoojeong Noh
    O-Kaung Lim
    Structural and Multidisciplinary Optimization, 2018, 57 : 95 - 113
  • [8] Visualization of irregular datasets using kernel density estimation function
    Opila, J.
    Pelech-Pilichowski, T.
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 195 - 200
  • [9] THE KERNEL DENSITY ESTIMATION FOR THE VISUALIZATION OF SPATIAL PATTERNS IN URBAN STUDIES
    Mora-Garcia, R. T.
    Cespedes-Lopez, M. F.
    Perez-Sanchez, J. C.
    Perez-Sanchez, R.
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 867 - 874
  • [10] Interactive Visualization of Multivariate Trajectory Data with Density Maps
    Scheepens, Roeland
    Willems, Niels
    van de Wetering, Huub
    van Wijk, Jarke J.
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011, 2011, : 147 - 154