Full rank Cholesky factorization for rank deficient matrices

被引:1
|
作者
Canto, Rafael [1 ]
Pelaez, Maria J. [2 ]
Urbano, Ana M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] ZLAB Innovac Tecnolog SL, Dept Form, Zaragoza, Spain
关键词
Rank deficient matrices; Cholesky factorization;
D O I
10.1016/j.aml.2014.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a rank deficient square matrix. We characterize the unique full rank Cholesky factorization LALAT of A where the factor L-A is a lower echelon matrix with positive leading entries. We compute an extended decomposition for the normal matrix (BB)-B-T where B is a rectangular rank deficient matrix. This decomposition is obtained without interchange of rows and without computing all entries of the normal matrix. Algorithms to compute both factorizations are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [1] Cholesky Factorization of Tile Low Rank Matrices on GPUs
    Boukaram, Wajih
    Zampini, Stefano
    Turkiyyah, George
    Keyest, David
    PROCEEDINGS OF THE 2024 SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, PP, 2024, : 65 - 77
  • [2] Strong rank revealing Cholesky factorization
    Gu, M
    Miranian, L
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 76 - 92
  • [3] ROBUST APPROXIMATE CHOLESKY FACTORIZATION OF RANK-STRUCTURED SYMMETRIC POSITIVE DEFINITE MATRICES
    Xia, Jianlin
    Gu, Ming
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2899 - 2920
  • [4] RANK FACTORIZATION OF NONNEGATIVE MATRICES
    THOMAS, LB
    SIAM REVIEW, 1974, 16 (03) : 393 - 394
  • [5] Multiple-rank modifications of a sparse Cholesky factorization
    Davis, TA
    Hager, WW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 997 - 1013
  • [6] FULL RANK FACTORIZATION AND THE FLANDERS THEOREM
    Canto, Rafael
    Ricarte, Beatriz
    Urbano, Ana M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 352 - 363
  • [7] Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices
    Canto, Rafael
    Ricarte, Beatriz
    Urbano, Ana M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) : 2213 - 2227
  • [8] FACTORIZATION OF FINITE RANK HANKEL AND TOEPLITZ MATRICES
    ELLIS, RL
    LAY, DC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 : 19 - 38
  • [9] On Boolean matrices with full factor rank
    Shitov, Ya. N.
    SBORNIK MATHEMATICS, 2013, 204 (11) : 1691 - 1699
  • [10] On Full-Rank Interval Matrices
    Shary, S. P.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2014, 7 (03) : 241 - 254