The height of an nth-order fundamental rogue wave for the nonlinear Schrodinger equation

被引:26
|
作者
Wang, Lihong [1 ,2 ]
Yang, Chenghao [2 ]
Wang, Ji [1 ]
He, Jingsong [3 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo, Zhejiang, Peoples R China
[2] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Qingdao, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Rogue wave; Nonlinear Schrodinger equation; Darboux transformation; DARBOUX TRANSFORMATION; MODULATION INSTABILITY; BREATHERS; OPTICS; HIERARCHY; SYSTEM; NLS;
D O I
10.1016/j.physleta.2017.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The height of an nth-order fundamental rogue wave q(rw)([n]) for the nonlinear Schrodinger equation, namely (2n + 1)c, is proved directly by a series of row operations on matrices appeared in the n-fold Darboux transformation. Here the positive constant c denotes the height of the asymptotical plane of the rogue wave. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1714 / 1718
页数:5
相关论文
共 50 条