Deep learning for quality prediction of nonlinear dynamic processes with variable attention-based long short-term memory network

被引:92
|
作者
Yuan, Xiaofeng [1 ]
Li, Lin [1 ]
Wang, Yalin [1 ]
Yang, Chunhua [1 ]
Gui, Weihua [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
attention; deep learning; long short-term memory; prediction; soft sensor; SOFT SENSOR; NEURAL-NETWORK; INFERENTIAL SENSORS; REGRESSION-MODEL; MACHINE;
D O I
10.1002/cjce.23665
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Industrial processes are often characterized with high nonlinearities and dynamics. For soft sensor modelling, it is important to model the nonlinear and dynamic relationship between input and output data. Thus, long short-term memory (LSTM) networks are suitable for quality prediction of soft sensor modelling. However, they do not consider the relevance of different input variables with the quality variable. To address this issue, a variable attention-based long short-term memory (VA-LSTM) network is proposed for soft sensing in this paper. In VA-LSTM, variable attention is designed to identify important input variables according to their relevance with quality prediction. After that, different attention weights are calculated and assigned to further obtain a weighted input sample at each time step. Finally, the LSTM network is exploited to capture the long-term dependencies of the weighted input time series to predict the quality variable. The performance of the proposed modelling method is validated on an industrial debutanizer column and a hydrocracking process.
引用
收藏
页码:1377 / 1389
页数:13
相关论文
共 50 条
  • [1] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [2] Knowledge Tracing with Contrastive Learning and Attention-Based Long Short-Term Memory Network
    Xu, Liancheng
    Guo, Lihua
    Wu, Xiaoqi
    Wang, Xinhua
    Guo, Lei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 25 - 36
  • [3] Supervised Attention-Based Bidirectional Long Short-Term Memory Network for Nonlinear Dynamic Soft Sensor Application
    Yang, Zeyu
    Jia, Ruining
    Wang, Peiliang
    Yao, Le
    Shen, Bingbing
    ACS OMEGA, 2023,
  • [4] Hybrid attention-based Long Short-Term Memory network for sarcasm identification
    Pandey, Rajnish
    Kumar, Abhinav
    Singh, Jyoti Prakash
    Tripathi, Sudhakar
    APPLIED SOFT COMPUTING, 2021, 106
  • [5] Correlational graph attention-based Long Short-Term Memory network for multivariate time series prediction
    Han, Shuang
    Dong, Hongbin
    Teng, Xuyang
    Li, Xiaohui
    Wang, Xiaowei
    APPLIED SOFT COMPUTING, 2021, 106
  • [6] Can Eruptions Be Predicted? Short-Term Prediction of Volcanic Eruptions via Attention-Based Long Short-Term Memory
    Le, Hiep, V
    Murata, Tsuyoshi
    Iguchi, Masato
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13320 - 13325
  • [7] Deep learning reservoir porosity prediction based on multilayer long short-term memory network
    Chen, Wei
    Yang, Liuqing
    Zha, Bei
    Zhang, Mi
    Chen, Yangkang
    GEOPHYSICS, 2020, 85 (04) : WA213 - WA225
  • [8] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [9] Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach
    Majeed, Mokhalad A.
    Shafri, Helmi Z. M.
    Wayayok, Aimrun
    Zulkafli, Zed
    GEOSPATIAL HEALTH, 2023, 18 (01)
  • [10] Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
    Skrobek, Dorian
    Krzywanski, Jaroslaw
    Sosnowski, Marcin
    Kulakowska, Anna
    Zylka, Anna
    Grabowska, Karolina
    Ciesielska, Katarzyna
    Nowak, Wojciech
    ENERGIES, 2020, 13 (24)