Deep learning for quality prediction of nonlinear dynamic processes with variable attention-based long short-term memory network

被引:92
|
作者
Yuan, Xiaofeng [1 ]
Li, Lin [1 ]
Wang, Yalin [1 ]
Yang, Chunhua [1 ]
Gui, Weihua [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
attention; deep learning; long short-term memory; prediction; soft sensor; SOFT SENSOR; NEURAL-NETWORK; INFERENTIAL SENSORS; REGRESSION-MODEL; MACHINE;
D O I
10.1002/cjce.23665
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Industrial processes are often characterized with high nonlinearities and dynamics. For soft sensor modelling, it is important to model the nonlinear and dynamic relationship between input and output data. Thus, long short-term memory (LSTM) networks are suitable for quality prediction of soft sensor modelling. However, they do not consider the relevance of different input variables with the quality variable. To address this issue, a variable attention-based long short-term memory (VA-LSTM) network is proposed for soft sensing in this paper. In VA-LSTM, variable attention is designed to identify important input variables according to their relevance with quality prediction. After that, different attention weights are calculated and assigned to further obtain a weighted input sample at each time step. Finally, the LSTM network is exploited to capture the long-term dependencies of the weighted input time series to predict the quality variable. The performance of the proposed modelling method is validated on an industrial debutanizer column and a hydrocracking process.
引用
收藏
页码:1377 / 1389
页数:13
相关论文
共 50 条
  • [21] Attention meets long short-term memory: A deep learning network for traffic flow forecasting
    Fang, Weiwei
    Zhuo, Wenhao
    Yan, Jingwen
    Song, Youyi
    Jiang, Dazhi
    Zhou, Teng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
  • [22] Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys
    Wu, Jianqing
    Wu, Qiang
    Shen, Jun
    Cai, Chen
    SENSORS, 2020, 20 (12) : 1 - 13
  • [23] An attention-based long short-term memory prediction model for working conditions of copper electrolytic plates
    Zhu, Hongqiu
    Peng, Lei
    Zhou, Can
    Dai, Yusi
    Peng, Tianyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [24] Attention-Based Bi-Directional Long-Short Term Memory Network for Earthquake Prediction
    Banna, Md. Hasan Al
    Ghosh, Tapotosh
    Nahian, Md. Jaber Al
    Taher, Kazi Abu
    Kaiser, M. Shamim
    Mahmud, Mufti
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2021, 9 : 56589 - 56603
  • [25] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [26] Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses
    Huang, Kun-Yi
    Wu, Chung-Hsien
    Su, Ming-Hsiang
    PATTERN RECOGNITION, 2019, 88 : 668 - 678
  • [27] A Temporal Window Attention-Based Window-Dependent Long Short-Term Memory Network for Multivariate Time Series Prediction
    Han, Shuang
    Dong, Hongbin
    ENTROPY, 2023, 25 (01)
  • [28] Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
    Zhou, Peng
    Shi, Wei
    Tian, Jun
    Qi, Zhenyu
    Li, Bingchen
    Hao, Hongwei
    Xu, Bo
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 207 - 212
  • [29] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Xiong, Shanwei
    Zhou, Li
    Dai, Yiyang
    Ji, Xu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 1 - 14
  • [30] Attention-Based Convolution Skip Bidirectional Long Short-Term Memory Network for Speech Emotion Recognition
    Zhang, Huiyun
    Huang, Heming
    Han, Henry
    IEEE ACCESS, 2021, 9 : 5332 - 5342