Deep learning for quality prediction of nonlinear dynamic processes with variable attention-based long short-term memory network

被引:92
|
作者
Yuan, Xiaofeng [1 ]
Li, Lin [1 ]
Wang, Yalin [1 ]
Yang, Chunhua [1 ]
Gui, Weihua [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
attention; deep learning; long short-term memory; prediction; soft sensor; SOFT SENSOR; NEURAL-NETWORK; INFERENTIAL SENSORS; REGRESSION-MODEL; MACHINE;
D O I
10.1002/cjce.23665
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Industrial processes are often characterized with high nonlinearities and dynamics. For soft sensor modelling, it is important to model the nonlinear and dynamic relationship between input and output data. Thus, long short-term memory (LSTM) networks are suitable for quality prediction of soft sensor modelling. However, they do not consider the relevance of different input variables with the quality variable. To address this issue, a variable attention-based long short-term memory (VA-LSTM) network is proposed for soft sensing in this paper. In VA-LSTM, variable attention is designed to identify important input variables according to their relevance with quality prediction. After that, different attention weights are calculated and assigned to further obtain a weighted input sample at each time step. Finally, the LSTM network is exploited to capture the long-term dependencies of the weighted input time series to predict the quality variable. The performance of the proposed modelling method is validated on an industrial debutanizer column and a hydrocracking process.
引用
收藏
页码:1377 / 1389
页数:13
相关论文
共 50 条
  • [31] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Shanwei Xiong
    Li Zhou
    Yiyang Dai
    Xu Ji
    ChineseJournalofChemicalEngineering, 2023, 56 (04) : 1 - 14
  • [32] An attention-based recurrent learning model for short-term travel time prediction
    Chughtai, Jawad-ur-Rehman
    Ul Haq, Irfan
    Muneeb, Muhammad
    PLOS ONE, 2022, 17 (12):
  • [33] Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory
    XUE Wendong
    CHAI Yuan
    LI Qigan
    HONG Yongqiang
    ZHENG Gaofeng
    Instrumentation, 2018, 5 (04) : 46 - 54
  • [34] Deep Learning with Long Short-Term Memory for Time Series Prediction
    Hua, Yuxiu
    Zhao, Zhifeng
    Li, Rongpeng
    Chen, Xianfu
    Liu, Zhiming
    Zhang, Honggang
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (06) : 114 - 119
  • [35] Spectrum Prediction Based on Taguchi Method in Deep Learning With Long Short-Term Memory
    Yu, Ling
    Chen, Jin
    Ding, Guoru
    Tu, Ya
    Yang, Jian
    Sun, Jiachen
    IEEE ACCESS, 2018, 6 : 45923 - 45933
  • [36] Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory
    Hua, Yuxiu
    Zhao, Zhifeng
    Liu, Zhiming
    Chen, Xianfu
    Li, Rongpeng
    Zhang, Honggang
    2018 IEEE 88TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2018,
  • [37] A Proton Flux Prediction Method Based on an Attention Mechanism and Long Short-Term Memory Network
    Zhang, Zhiqian
    Liu, Lei
    Quan, Lin
    Shen, Guohong
    Zhang, Rui
    Jiang, Yuqi
    Xue, Yuxiong
    Zeng, Xianghua
    AEROSPACE, 2023, 10 (12)
  • [38] Tool Wear Prediction Based on Attention Long Short-term Memory Network with Small Samples
    Yu, Weiwei
    Huang, Hua
    Guo, Runlan
    Yang, Pengqiang
    SENSORS AND MATERIALS, 2023, 35 (07) : 2321 - 2335
  • [39] Shear Wave Velocity Prediction Based on the Long Short-Term Memory Network with Attention Mechanism
    Fu, Xingan
    Wei, Youhua
    Su, Yun
    Hu, Haixia
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [40] Air Quality Prediction Based on Neural Network Model of Long Short-term Memory
    Du, Zhehua
    Lin, Xin
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508