Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach

被引:0
|
作者
Majeed, Mokhalad A. [1 ]
Shafri, Helmi Z. M. [1 ,2 ]
Wayayok, Aimrun [3 ]
Zulkafli, Zed [1 ]
机构
[1] Univ Putra Malaysia UPM, Dept Civil Engn, Fac Engn, Serdang, Malaysia
[2] Univ Putra Malaysia, Geospatial Informat Sci Res Ctr GISRC, Fac Engn, Serdang, Malaysia
[3] Univ Putra Malaysia, Dept Biol & Agr Engn, Fac Engn, Serdang, Malaysia
关键词
dengue fever; LSTM; attention; deep learning; Malaysia; OUTBREAKS;
D O I
10.4081/gh.2023.1176
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This research proposes a 'temporal attention' addition for long-short term memory (LSTM) models for dengue prediction. The number of monthly dengue cases was collected for each of five Malaysian states i.e. Selangor, Kelantan, Johor, Pulau Pinang, and Melaka from 2011 to 2016. Climatic, demographic, geographic and temporal attributes were used as covariates. The proposed LSTM models with temporal attention was compared with several benchmark models including a linear support vector machine (LSVM), a radial basis function support vector machine (RBFSVM), a decision tree (DT), a shallow neural network (SANN) and a deep neural network (D-ANN). In addition, experiments were conducted to analyze the impact of look-back settings on each model performance. The results showed that the attention LSTM (A-LSTM) model performed best, with the stacked, attention LSTM (SA-LSTM) one in second place. The LSTM and stacked LSTM (S-LSTM) models performed almost identically but with the accuracy improved by the attention mechanism was added. Indeed, they were both found to be superior to the benchmark models mentioned above. The best results were obtained when all attributes were included in the model. The four models (LSTM, S-LSTM, A-LSTM and SA-LSTM) were able to accurately predict dengue presence 1-6 months ahead. Our findings provide a more accurate dengue prediction model than previously used, with the prospect of also applying this approach in other geographic areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    [J]. PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [2] Can Eruptions Be Predicted? Short-Term Prediction of Volcanic Eruptions via Attention-Based Long Short-Term Memory
    Le, Hiep, V
    Murata, Tsuyoshi
    Iguchi, Masato
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13320 - 13325
  • [3] Short-term Wind Speed Prediction with a Two-layer Attention-based LSTM
    Qian, Jingcheng
    Zhu, Mingfang
    Zhao, Yingnan
    He, Xiangjian
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (02): : 197 - 209
  • [4] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [5] STOCK MARKET PREDICTION USING LONG SHORT-TERM MEMORY (LSTM)
    Abu Nadif, Mohammad
    Samin, Towhidur Rahman
    Islam, Tohedul
    [J]. 2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [6] Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
    Yu, Qiutong
    Tolson, Bryan A.
    Shen, Hongren
    Han, Ming
    Mai, Juliane
    Lin, Jimmy
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (09) : 2107 - 2122
  • [7] Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys
    Wu, Jianqing
    Wu, Qiang
    Shen, Jun
    Cai, Chen
    [J]. SENSORS, 2020, 20 (12) : 1 - 13
  • [8] An attention-based long short-term memory prediction model for working conditions of copper electrolytic plates
    Zhu, Hongqiu
    Peng, Lei
    Zhou, Can
    Dai, Yusi
    Peng, Tianyu
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [9] Correlational graph attention-based Long Short-Term Memory network for multivariate time series prediction
    Han, Shuang
    Dong, Hongbin
    Teng, Xuyang
    Li, Xiaohui
    Wang, Xiaowei
    [J]. APPLIED SOFT COMPUTING, 2021, 106
  • [10] Hybrid attention-based Long Short-Term Memory network for sarcasm identification
    Pandey, Rajnish
    Kumar, Abhinav
    Singh, Jyoti Prakash
    Tripathi, Sudhakar
    [J]. APPLIED SOFT COMPUTING, 2021, 106