Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

被引:273
|
作者
Schmitt, Simon [1 ]
Gefen, Tuvia [2 ]
Stuerner, Felix M. [1 ]
Unden, Thomas [1 ]
Wolff, Gerhard [1 ]
Mueller, Christoph [1 ]
Scheuer, Jochen [1 ,3 ]
Naydenov, Boris [1 ,3 ]
Markham, Matthew [4 ]
Pezzagna, Sebastien [5 ]
Meijer, Jan [5 ]
Schwarz, Ilai [3 ,6 ]
Plenio, Martin B. [3 ,6 ]
Retzker, Alex [2 ]
McGuinness, Liam P. [1 ]
Jelezko, Fedor [1 ,3 ]
机构
[1] Ulm Univ, Inst Quantum Opt, D-89081 Ulm, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Ulm Univ, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[4] Element Six, Harwell Campus,Fermi Ave, Didcot OX11 0QR, Oxon, England
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Ulm Univ, Inst Theoret Phys, D-89069 Ulm, Germany
基金
以色列科学基金会; 欧洲研究理事会;
关键词
SPIN; RESONANCE; TIME;
D O I
10.1126/science.aam5532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [1] Nanoscale Magnetic Resonance Spectroscopy Using a Carbon Nanotube Double Quantum Dot
    Song, Wanlu
    Du, Tianyi
    Liu, Haibin
    Plenio, Martin B.
    Cai, Jianming
    PHYSICAL REVIEW APPLIED, 2019, 12 (05)
  • [2] Quantum Sensor for Nanoscale Defect Characterization
    Kerski, J.
    Lochner, P.
    Ludwig, A.
    Wieck, A. D.
    Kurzmann, A.
    Lorke, A.
    Geller, M.
    PHYSICAL REVIEW APPLIED, 2021, 15 (02)
  • [3] Low-Frequency Noise Evaluation on a Commercial Magnetoimpedance Sensor at Submillihertz Frequencies for Space Magnetic Field Detection
    Wang, Tao
    Kang, Chen
    Chai, Guozhi
    SENSORS, 2019, 19 (22)
  • [4] Combined Magnetic Field Sensor with Nanoscale Elements
    Ichkitidze, L. P.
    Selishchev, S., V
    Potapov, D. A.
    Telyshev, D., V
    XIV RUSSIAN-GERMANY CONFERENCE ON BIOMEDICAL ENGINEERING (RGC-2019), 2019, 2140
  • [5] Wide-band nanoscale magnetic resonance spectroscopy using quantum relaxation of a single spin in diamond
    Wood, James D. A.
    Broadway, David A.
    Hall, Liam T.
    Stacey, Alastair
    Simpson, David A.
    Tetienne, Jean-Philippe
    Hollenberg, Lloyd C. L.
    PHYSICAL REVIEW B, 2016, 94 (15)
  • [6] Nanoscale NMR Spectroscopy Using Nanodiamond Quantum Sensors
    Holzgrafe, Jeffrey
    Gu, Qiushi
    Beitner, Jan
    Kara, Dhiren M.
    Knowles, Helena S.
    Atature, Mete
    PHYSICAL REVIEW APPLIED, 2020, 13 (04)
  • [7] Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy
    Dominik B. Bucher
    Diana P. L. Aude Craik
    Mikael P. Backlund
    Matthew J. Turner
    Oren Ben Dor
    David R. Glenn
    Ronald L. Walsworth
    Nature Protocols, 2019, 14 : 2707 - 2747
  • [8] Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy
    Bucher, Dominik B.
    Craik, Diana P. L. Aude
    Backlund, Mikael P.
    Turner, Matthew J.
    Ben Dor, Oren
    Glenn, David R.
    Walsworth, Ronald L.
    NATURE PROTOCOLS, 2019, 14 (09) : 2707 - 2747
  • [9] Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor
    Smits, Janis
    Damron, Joshua T.
    Kehayias, Pauli
    McDowell, Andrew F.
    Mosavian, Nazanin
    Fescenko, Ilja
    Ristoff, Nathaniel
    Laraoui, Abdelghani
    Jarmola, Andrey
    Acosta, Victor M.
    SCIENCE ADVANCES, 2019, 5 (07)
  • [10] Digital noise spectroscopy with a quantum sensor
    Wang, Guoqing
    Zhu, Yuan
    Li, Boning
    Li, Changhao
    Viola, Lorenza
    Cooper, Alexandre
    Cappellaro, Paola
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):