Pascal's theorem and quantum deformation

被引:0
|
作者
Leitenberger, F [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
关键词
invariant theory; Pascal's theorem; quantum groups;
D O I
10.1023/A:1007615320304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a transfer principle, Pascal's Theorem is equivalent to a theorem about point pairs on the real line. It appears that Pascal's Theorem is equivalent to the vanishing of a common invariant of six quadratic forms. Using the q-deformed invariant theory of Leitenberger (J. Algebra 222 (1999), 82), we construct corresponding quantum invariants by a computer calculation.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [21] A new configurable decimation filter using Pascal's triangle theorem
    Cherik Chahardah, A.
    Farshidi, E.
    World Academy of Science, Engineering and Technology, 2011, 78 : 75 - 78
  • [22] A very simple proof of Pascal's hexagon theorem and some applications
    Stefanovic, Nedeljko
    Milosevic, Milos
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 619 - 629
  • [23] Quantum Strassen's theorem
    Friedland, Shmuel
    Ge, Jingtong
    Zhi, Lihong
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (03)
  • [24] A GENERALIZATION OF PASCAL THEOREM TO COMMUTATIVE RINGS
    KULKARNI, M
    ARCHIV DER MATHEMATIK, 1980, 33 (05) : 426 - 429
  • [25] A SIMPLE PROOF OF PASCAL HEXAGON THEOREM
    VANYZEREN, J
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (10): : 930 - 931
  • [26] THE BINOMIAL THEOREM AND THE EXTENDED PASCAL TRIANGLE
    FJELSTAD, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) : 11 - 17
  • [27] Quantum Bernstein's theorem and the hyperoctahedral quantum group
    Joziak, Pawel
    Szpojankowski, Kamil
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [28] A quantum version of Sanov's theorem
    Bjelakovic, I
    Deuschel, JD
    Krüger, T
    Seiler, R
    Siegmund-Schultze, R
    Szkola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) : 659 - 671
  • [29] Quantum kaleidoscopes and Bell's theorem
    Aravind, P. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (11-13): : 1711 - 1729
  • [30] Quantum equivalent of the Bertrand's theorem
    Gurappa, N
    Panigrahi, PK
    Raju, TS
    Srinivasan, V
    MODERN PHYSICS LETTERS A, 2000, 15 (30) : 1851 - 1857