Pascal's theorem and quantum deformation

被引:0
|
作者
Leitenberger, F [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
关键词
invariant theory; Pascal's theorem; quantum groups;
D O I
10.1023/A:1007615320304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a transfer principle, Pascal's Theorem is equivalent to a theorem about point pairs on the real line. It appears that Pascal's Theorem is equivalent to the vanishing of a common invariant of six quadratic forms. Using the q-deformed invariant theory of Leitenberger (J. Algebra 222 (1999), 82), we construct corresponding quantum invariants by a computer calculation.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [31] A Quantum Version of Sanov's Theorem
    Igor Bjelaković
    Jean-Dominique Deuschel
    Tyll Krüger
    Ruedi Seiler
    Rainer Siegmund-Schultze
    Arleta Szkoła
    Communications in Mathematical Physics, 2005, 260 : 659 - 671
  • [32] Strassen's theorem for quantum couplings
    Zhou, Li
    Ying, Shenggang
    Yu, Nengkun
    Ying, Mingsheng
    THEORETICAL COMPUTER SCIENCE, 2020, 802 : 67 - 76
  • [33] MASSERA'S THEOREM IN QUANTUM CALCULUS
    Bohner, Martin
    Mesquita, Jaqueline G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) : 4755 - 4766
  • [34] Strassen's theorem for quantum couplings
    Zhou L.
    Ying S.
    Yu N.
    Ying M.
    Theoretical Computer Science, 2020, 802 : 67 - 76
  • [35] Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem
    Fabio Benatti
    Tyll Krüger
    Markus Müller
    Rainer Siegmund-Schultze
    Arleta Szkoła
    Communications in Mathematical Physics, 2006, 265 : 437 - 461
  • [36] Entropy and quantum Kolmogorov complexity:: A quantum Brudno's theorem
    Benatti, Fabio
    Krueger, Tyll
    Mueller, Markus
    Siegmund-Schultze, Rainer
    Szkola, Arleta
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (02) : 437 - 461
  • [37] Quantum Dynamical Applications of Salem's Theorem
    Damanik, David
    del Rio, Rafael
    LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (01) : 13 - 19
  • [38] Bell's theorem, information and quantum physics
    Zeilinger, A
    QUANTUM (UN)SPEAKABLES FROM BELL TO QUANTUM INFORMATION, 2002, : 241 - 254
  • [39] Bernstein's analyticity theorem for quantum differences
    Sjodin, Tord
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 67 - 73
  • [40] An extension of Gleason's theorem for quantum computation
    Edalat, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (7-8) : 1827 - 1840