Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images

被引:187
|
作者
Zhang, Hongyan [1 ]
Zhai, Han [1 ]
Zhang, Liangpei [1 ]
Li, Pingxiang [1 ]
机构
[1] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); sparse representation; spectral clustering; subspace clustering; ALGORITHM; CLASSIFICATION; RECOVERY; CUTS;
D O I
10.1109/TGRS.2016.2524557
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Clustering for hyperspectral images (HSIs) is a very challenging task due to its inherent complexity. In this paper, we propose a novel spectral-spatial sparse subspace clustering (S4C) algorithm for hyperspectral remote sensing images. First, by treating each kind of land-cover class as a subspace, we introduce the sparse subspace clustering (SSC) algorithm to HSIs. Then, considering the spectral and spatial properties of HSIs, the high spectral correlation and rich spatial information of the HSIs are taken into consideration in the SSC model to obtain a more accurate coefficient matrix, which is used to build the adjacent matrix. Finally, spectral clustering is applied to the adjacent matrix to obtain the final clustering result. Several experiments were conducted to illustrate the performance of the proposed S4C algorithm.
引用
收藏
页码:3672 / 3684
页数:13
相关论文
共 50 条
  • [41] A New Methodology for Spectral-Spatial Classification of Hyperspectral Images
    Miao, Zelang
    Shi, Wenzhong
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [42] Adaptive Spectral-Spatial Compression of Hyperspectral Image With Sparse Representation
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 671 - 682
  • [43] JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3878 - 3882
  • [44] SPECTRAL-SPATIAL JOINT NOISE ESTIMATION FOR HYPERSPECTRAL IMAGES
    Ye, Minchao
    Chen, Hong
    Ji, Chenxi
    Lei, Ling
    Qian, Yuntao
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 230 - 233
  • [45] Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing
    Zhang, Shaoquan
    Li, Jun
    Li, Heng-Chao
    Deng, Chengzhi
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3265 - 3276
  • [46] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
    Hu, Xiang
    Li, Teng
    Zhou, Tong
    Peng, Yuanxi
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [47] Spectral-Spatial Classification of Hyperspectral Images Based on Joint Bilateral Filter and Stacked Sparse Autoencoder
    Wan, Xiaoqing
    Zhao, Chunhui
    Yan, Yiming
    [J]. PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 87 - 91
  • [48] A novel spectral-spatial sparse method for hyperspectral target detection
    [J]. Song, Y.-G. (songyigang@sina.com), 1600, China Ordnance Industry Corporation (35):
  • [49] Spectral-Spatial Classification of Hyperspectral Images Using CNNs and Approximate Sparse Multinomial Logistic Regression
    Kutluk, Sezer
    Kayabol, Koray
    Akan, Aydin
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [50] Spectral-Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising
    Lu, Ting
    Li, Shutao
    Fang, Leyuan
    Ma, Yi
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 373 - 385