JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, TELIN IPI Imec, Dept Telecommun & Informat Proc, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Hubei, Peoples R China
关键词
Hyperspectral images; joint sparsity; sparse subspace clustering; super-pixels segmentation;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sparse subspace clustering (SSC) has been widely applied in remote sensing demonstrating excellent performance. Recent extensions incorporate spatial information, typically via smoothness-enforcing regularization. We propose an alternative approach: a joint sparsity SSC model, where pixels within a local region are enforced to select a common set of samples in the subspace-sparse representation. The corresponding optimization problem is solved by the alternating direction method of multipliers (ADMM). Experimental results on real data show a significant improvement over SSC and related state-of-the-art methods.
引用
收藏
页码:3878 / 3882
页数:5
相关论文
共 50 条
  • [1] Semisupervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 989 - 999
  • [2] CLUSTERING HYPERSPECTRAL IMAGES VIA SPARSE DICTIONARY LEARNING WITH JOINT SPARSITY AND SHAREDWAVELETS
    Huang, Nan
    Xiao, Liang
    Tang, Songze
    Liu, Qichao
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 803 - 806
  • [3] Efficient sparse subspace clustering for polarized hyperspectral images
    Chen, Zhengyi
    Zhang, Chunmin
    [J]. THIRD INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2019, 11052
  • [4] Sparse Subspace Clustering for Hyperspectral Images with Missing Pixels
    Bacca, Jorge
    Sanchez, Karen
    Arguello, Henry
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [5] The improved CESSC algorithm based on meanshift sparse subspace clustering for hyperspectral images
    Wang ChengZhi
    Ding Yun
    Yang Jipan
    YanQing
    Zhang DeXiang
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 1280 - 1285
  • [6] Class Probability Propagation of Supervised Information Based on Sparse Subspace Clustering for Hyperspectral Images
    Yan, Qing
    Ding, Yun
    Xia, Yi
    Chong, Yanwen
    Zheng, Chunhou
    [J]. REMOTE SENSING, 2017, 9 (10)
  • [7] Gaussian Kernel Dynamic Similarity Matrix Based Sparse Subspace Clustering for Hyperspectral Images
    Long, Yonghong
    Deng, Xiuqin
    Zhong, Guoxiang
    Fan, Juan
    Liu, Fuchun
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 211 - 215
  • [8] SKETCHED SPARSE SUBSPACE CLUSTERING FOR LARGE-SCALE HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1766 - 1770
  • [9] LANDMARK-BASED LARGE-SCALE SPARSE SUBSPACE CLUSTERING METHOD FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 799 - 802
  • [10] Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10