SKETCHED SPARSE SUBSPACE CLUSTERING FOR LARGE-SCALE HYPERSPECTRAL IMAGES

被引:0
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, Dept Telecommun & Informat Proc, TELIN GAIM, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse subspace clustering; sketching; hyperspectral image; large-scale data;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in clustering of hyperspectral images. However, the computational complexity of SSC-based methods is prohibitive for large-scale problems. We propose a large-scale SSC-based method, which processes efficiently large-scale HSIs without sacrificing the clustering accuracy. The proposed approach incorporates sketching of the self-representation dictionary reducing thereby largely the number of optimization variables. In addition, we employ a total variation (TV) regularization of the sparse matrix, resulting in a robust sparse representation. We derive a solver based on the alternating direction method of multipliers (AD-MM) for the resulting optimization problem. Experimental results on real data show improvements over the traditional SSC-based methods in terms of accuracy and running time.
引用
收藏
页码:1766 / 1770
页数:5
相关论文
共 50 条
  • [1] LANDMARK-BASED LARGE-SCALE SPARSE SUBSPACE CLUSTERING METHOD FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 799 - 802
  • [2] Distributed Sketched Subspace Clustering for Large-scale Datasets
    Traganitis, Panagiotis A.
    Giannakis, Georgios B.
    [J]. 2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [3] Nonlocal Means Regularized Sketched Reweighted Sparse and Low-Rank Subspace Clustering for Large Hyperspectral Images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4164 - 4178
  • [4] LARGE-SCALE SPARSE SUBSPACE CLUSTERING USING LANDMARKS
    Pourkarnali-Anaraki, Farhad
    [J]. 2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [5] Sparse Subspace Clustering for Hyperspectral Images with Missing Pixels
    Bacca, Jorge
    Sanchez, Karen
    Arguello, Henry
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [6] Efficient sparse subspace clustering for polarized hyperspectral images
    Chen, Zhengyi
    Zhang, Chunmin
    [J]. THIRD INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2019, 11052
  • [7] Randomly Sketched Sparse Subspace Clustering for Acoustic Scene Clustering
    Li, Shuoyang
    Wang, Wenwu
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2489 - 2493
  • [8] JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3878 - 3882
  • [9] Dual Smooth Graph Convolutional Clustering for Large-Scale Hyperspectral Images
    Chen, Jiaxin
    Liu, Shujun
    Wang, Huajun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6825 - 6840
  • [10] Sketched Subspace Clustering
    Traganitis, Panagiotis A.
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (07) : 1663 - 1675