Spectral-Spatial Classification of Hyperspectral Images Using CNNs and Approximate Sparse Multinomial Logistic Regression

被引:0
|
作者
Kutluk, Sezer [1 ]
Kayabol, Koray [2 ]
Akan, Aydin [3 ]
机构
[1] Istanbul Univ Cerrahpasa, Elect Elect Engn Dept, Istanbul, Turkey
[2] Gebze Tech Univ, Elect Engn Dept, Kocaeli, Turkey
[3] Izmir Katip Celebi Univ, Biomed Engn Dept, Izmir, Turkey
关键词
hyperspectral image classification; remote sensing; deep learning; convolutional neural networks; logistic regression;
D O I
10.23919/eusipco.2019.8902983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a technique for training convolutional neural networks (CNNs) in which the convolutional layers are trained using a gradient descent based method and the classification layer is trained using a second order method called approximate sparse multinomial logistic regression (ASMLR) which also provides a spatial smoothing procedure that increases the classification accuracy for hyperspectral images. ASMLR performs well on hyperspectral images, and CNNs are known to give good results in many applications such as image classification and object recognition. Thus, the proposed technique allows us to improve the performance of CNNs by training the whole network with an end-to-end framework. This approach takes advantage of convolutional layers for spectral feature extraction, and of the softmax classification layer for feature selection with sparsity constraints, and an intrinsic learning rate adjustment mechanism. In classification, we also use a spatial smoothing method. The proposed method was evaluated on two hyperspectral images for spectral-spatial land cover classification, and the results have shown that it outperforms the CNN and the ASMLR classifiers when they are used separately.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Approximate Sparse Multinomial Logistic Regression for Classification
    Kayabol, Koray
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 490 - 493
  • [2] Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03): : 809 - 823
  • [3] Sparse Representation-Based Augmented Multinomial Logistic Extreme Learning Machine With Weighted Composite Features for Spectral-Spatial Classification of Hyperspectral Images
    Cao, Faxian
    Yang, Zhijing
    Ren, Jinchang
    Ling, Wing-Kuen
    Zhao, Huimin
    Sun, Meijun
    Benedilasson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11): : 6263 - 6279
  • [4] Weighted Sparse Graph Regularization for Spectral-Spatial Classification of Hyperspectral Images
    Xue, Zhaohui
    Yang, Sirui
    Zhang, Ling
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1630 - 1634
  • [5] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [6] Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 318 - 322
  • [7] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675
  • [8] Hyperspectral images classification by spectral-spatial processing
    [J]. 2016, Institute of Electrical and Electronics Engineers Inc., United States
  • [9] Hyperspectral Images Classification by Spectral-Spatial Processing
    Imani, Maryam
    Ghassemian, Hassan
    [J]. 2016 8TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016, : 456 - 461
  • [10] Spectral-Spatial Classification of Hyperspectral Images Using Label Dependence
    He, Zhuangzhuang
    Wu, Hao
    Wu, Guodong
    [J]. IEEE ACCESS, 2021, 9 : 119219 - 119231