Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder

被引:9
|
作者
Zhao, Chunhui [1 ]
Wan, Xiaoqing [1 ]
Zhao, Genping [1 ]
Yan, Yiming [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
classification; hyperspectral imagery; spatial filtering; artificial fish swarm algorithm; stacked sparse autoencoder;
D O I
10.1117/1.JRS.11.016033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A spectral-spatial classification method using a trilateral filter (TF) and stacked sparse autoencoder (SSA) for improving the classification accuracy of hyperspectral image (HSI) is proposed. The operation is carried out in two main stages: edge-preserved smoothing and high-level feature learning. First, a reference image obtained from dual tree complex wavelet transform is adopted in a TF for smoothing the HSI. As expected, the filter not only can effectively attenuate the mixed noise (e. g., Gaussian noise and impulse noise) where the bilateral filter shows poor performance but also can produce useful spectral-spatial features from HSI by considering geometric closeness and photometric similarity between pixels simultaneously. Second, an artificial fish swarm algorithm (AFSA) is first introduced into a SSA, and the proposed deep learning architecture is used to adaptively exploit more abstract and differentiable high-level feature representations from the smoothed HSI, based on the factor that AFSA provides better trade-off among concurrency, search efficiency, and convergence rate compared with gradient descent and back-propagation algorithms in a traditional SSA. Finally, a random forest classifier is utilized to perform supervised fine-tuning and classification. Experimental results on two real HSI data sets demonstrate that the proposed method generates competitive performance compared with those of conventional methods. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spectral-Spatial Classification of Hyperspectral Images Based on Joint Bilateral Filter and Stacked Sparse Autoencoder
    Wan, Xiaoqing
    Zhao, Chunhui
    Yan, Yiming
    [J]. PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 87 - 91
  • [2] Spectral-spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [3] Spectral-spatial classification method for hyperspectral images using stacked sparse autoencoder suitable in limited labelled samples situation
    Ahmadi, Seyyed Ali
    Mehrshad, Nasser
    Arghavan, Seyyed Mohammadali
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (07) : 2031 - 2054
  • [4] Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification
    Tao, Chao
    Pan, Hongbo
    Li, Yansheng
    Zou, Zhengrou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2438 - 2442
  • [5] Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Cui, Bing
    Liu, Wu
    Qi, Bin
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 47 - 63
  • [6] Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
    Wan, Xiaoqing
    Zhao, Chunhui
    Wang, Yanchun
    Liu, Wu
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2017, 86 : 77 - 89
  • [7] Weighted Sparse Graph Regularization for Spectral-Spatial Classification of Hyperspectral Images
    Xue, Zhaohui
    Yang, Sirui
    Zhang, Ling
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1630 - 1634
  • [8] Hyperspectral Image Classification Based on Stacked Contractive Autoencoder Combined with Adaptive Spectral-Spatial Information
    School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
    [J]. IEEE Access, 2021, (96404-96415)
  • [9] Hyperspectral Image Classification Based on Stacked Contractive Autoencoder Combined With Adaptive Spectral-Spatial Information
    Guo, Pengyue
    Liu, Zhenbing
    Lu, Haoxiang
    Wang, Zimin
    [J]. IEEE ACCESS, 2021, 9 : 96404 - 96415
  • [10] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675