Spectral-spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder

被引:27
|
作者
Abdi, Ghasem [1 ]
Samadzadegan, Farhad [1 ]
Reinartz, Peter [2 ]
机构
[1] Univ Tehran, Fac Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst, Dept Photogrammetry & Image Anal, Wessling, Germany
关键词
deep features; deep learning; hyperspectral imagery classification; softmax regression; spectral-spatial unsupervised feature learning; stacked sparse autoencoder; NEURAL-NETWORKS;
D O I
10.1117/1.JRS.11.042604
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classification of hyperspectral remote sensing imagery is one of the most popular topics because of its intrinsic potential to gather spectral signatures of materials and provides distinct abilities to object detection and recognition. In the last decade, an enormous number of methods were suggested to classify hyperspectral remote sensing data using spectral features, though some are not using all information and lead to poor classification accuracy; on the other hand, the exploration of deep features is recently considered a lot and has turned into a research hot spot in the geoscience and remote sensing research community to enhance classification accuracy. A deep learning architecture is proposed to classify hyperspectral remote sensing imagery by joint utilization of spectral-spatial information. A stacked sparse autoencoder provides unsupervised feature learning to extract high-level feature representations of joint spectralspatial information; then, a soft classifier is employed to train high-level features and to fine-tune the deep learning architecture. Comparative experiments are performed on two widely used hyperspectral remote sensing data (Salinas and PaviaU) and a coarse resolution hyperspectral data in the long-wave infrared range. The obtained results indicate the superiority of the proposed spectral-spatial deep learning architecture against the conventional classification methods. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification
    Tao, Chao
    Pan, Hongbo
    Li, Yansheng
    Zou, Zhengrou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2438 - 2442
  • [2] Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Cui, Bing
    Liu, Wu
    Qi, Bin
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 47 - 63
  • [3] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [4] Spectral-Spatial Classification of Hyperspectral Images Based on Joint Bilateral Filter and Stacked Sparse Autoencoder
    Wan, Xiaoqing
    Zhao, Chunhui
    Yan, Yiming
    [J]. PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 87 - 91
  • [5] Unsupervised Spectral-Spatial Feature Extraction With Generalized Autoencoder for Hyperspectral Imagery
    Koda, Satoru
    Melgani, Farid
    Nishii, Ryuei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 469 - 473
  • [6] Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
    Wan, Xiaoqing
    Zhao, Chunhui
    Wang, Yanchun
    Liu, Wu
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2017, 86 : 77 - 89
  • [7] Spectral-spatial classification method for hyperspectral images using stacked sparse autoencoder suitable in limited labelled samples situation
    Ahmadi, Seyyed Ali
    Mehrshad, Nasser
    Arghavan, Seyyed Mohammadali
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (07) : 2031 - 2054
  • [8] Distance Transform-Based Spectral-Spatial Feature Vector for Hyperspectral Image Classification with Stacked Autoencoder
    Madani, Hadis
    McIsaac, Kenneth
    [J]. REMOTE SENSING, 2021, 13 (09)
  • [9] Spectral-Spatial Hyperspectral Image Classification using Deep Learning
    Singh, Simranjit
    Kasana, Singara Singh
    [J]. PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 411 - 417
  • [10] Hyperspectral Imagery Classification based on Rotation Invariant Spectral-Spatial Feature
    Tao, Chao
    Jin, Jing
    Tang, Yuqi
    Zou, ZhengRong
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 422 - 424