Hamiltonian structure of Hamiltonian chaos

被引:7
|
作者
Tang, XZ [1 ]
Boozer, AH
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(97)00797-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a kinematical point of view, the geometrical information of Hamiltonian chaos is given by the (un) stable directions, while the dynamical information is given by the Lyapunov exponents. The finite time Lyapunov exponents are of particular importance in physics. The spatial variations of the finite time Lyapunov exponent and its associated (un)stable direction are related. Both of them are found to be determined by a new Hamiltonian of the same number of degrees of freedom as the original one. This new Hamiltonian defines a flow field with characteristically chaotic trajectories. The direction and the magnitude of the phase flow field give the (un)stable direction and the finite time Lyapunov exponent of the original Hamiltonian. Our analysis was based on a 1 1/2 degree of freedom Hamiltonian system. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:476 / 482
页数:7
相关论文
共 50 条
  • [21] HAMILTONIAN CHAOS IN THE QUADRATIC JOSEPHSON EFFECT
    AMBIKA, G
    PHYSICS LETTERS A, 1990, 150 (5-7) : 273 - 276
  • [22] The ergodic hierarchy, randomness and Hamiltonian chaos
    Berkovitz, Joseph
    Frigg, Roman
    Kronz, Fred
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2006, 37 (04): : 661 - 691
  • [23] Suppression of dynamic chaos in hamiltonian systems
    Vecheslavov, VV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 92 (04) : 744 - 751
  • [24] From thermonuclear fusion to Hamiltonian chaos
    D. F. Escande
    The European Physical Journal H, 2018, 43 : 397 - 420
  • [25] From thermonuclear fusion to Hamiltonian chaos
    Escande, D. F.
    EUROPEAN PHYSICAL JOURNAL H, 2018, 43 (4-5): : 397 - 420
  • [26] STABILITY AND CHAOS IN HAMILTONIAN-DYNAMICS
    ISOLA, S
    LIVI, R
    RUFFO, S
    VULPIANI, A
    PHYSICAL REVIEW A, 1986, 33 (02): : 1163 - 1170
  • [27] Suppression of dynamic chaos in Hamiltonian systems
    Vecheslavov, V.V.
    2001, Nauka Moscow (119):
  • [28] CHAOS AND CURVATURE IN A QUARTIC HAMILTONIAN SYSTEM
    JOY, MP
    SABIR, M
    PRAMANA-JOURNAL OF PHYSICS, 1993, 40 (01): : 17 - 23
  • [29] Predicting two dimensional Hamiltonian chaos
    Pattanayak, AK
    Schieve, WC
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 34 - 36
  • [30] Hamiltonian chaos in homogeneous ADM cosmologies?
    Ramey, RD
    Balazs, NL
    FOUNDATIONS OF PHYSICS, 2001, 31 (02) : 371 - 398