Hamiltonian structure of Hamiltonian chaos

被引:7
|
作者
Tang, XZ [1 ]
Boozer, AH
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(97)00797-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a kinematical point of view, the geometrical information of Hamiltonian chaos is given by the (un) stable directions, while the dynamical information is given by the Lyapunov exponents. The finite time Lyapunov exponents are of particular importance in physics. The spatial variations of the finite time Lyapunov exponent and its associated (un)stable direction are related. Both of them are found to be determined by a new Hamiltonian of the same number of degrees of freedom as the original one. This new Hamiltonian defines a flow field with characteristically chaotic trajectories. The direction and the magnitude of the phase flow field give the (un)stable direction and the finite time Lyapunov exponent of the original Hamiltonian. Our analysis was based on a 1 1/2 degree of freedom Hamiltonian system. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:476 / 482
页数:7
相关论文
共 50 条
  • [42] DIFFUSION IN HAMILTONIAN CHAOS AND ITS SIZE DEPENDENCE
    KONISHI, T
    KANEKO, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : L715 - L720
  • [43] Order and chaos in time periodic Hamiltonian systems
    Tzemos, A. C.
    Contopoulos, G.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 419
  • [44] Order and chaos in Hamiltonian systems with quartic coupling
    Mohammed El Ghamari
    Jaouad Kharbach
    Walid Chatar
    Mohamed Benkhali
    Rachid Masrour
    Abdellah Rezzouk
    Mohammed Ouazzani Jamil
    The European Physical Journal Plus, 137
  • [45] CONSERVATION-LAWS AND TRANSPORT IN HAMILTONIAN CHAOS
    SKIFF, F
    ANDEREGG, F
    GOOD, TN
    PARIS, PJ
    TRAN, MQ
    RYNN, N
    STERN, RA
    PHYSICAL REVIEW LETTERS, 1988, 61 (18) : 2034 - 2037
  • [46] Hamiltonian chaos and fractals in cavity quantum electrodynamics
    Prants, SV
    Chaotic Dynamics and Transport in Classical and Quantum Systems, 2005, 182 : 349 - 363
  • [47] Quasiregularity and rigorous diffusion of strong Hamiltonian chaos
    Barash, O.
    Dana, I.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [48] On the relationship between Hamiltonian chaos and classical gravity
    Goldfain, E
    CHAOS SOLITONS & FRACTALS, 2004, 20 (02) : 187 - 194
  • [49] HAMILTONIAN CHAOS IN NONLINEAR OPTICAL POLARIZATION DYNAMICS
    DAVID, D
    HOLM, DD
    TRATNIK, MV
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 187 (06): : 281 - 367
  • [50] From Hamiltonian chaos to Maxwell's demon
    Zaslavsky, GM
    CHAOS, 1995, 5 (04) : 653 - 661