CHAOS AND CURVATURE IN A QUARTIC HAMILTONIAN SYSTEM

被引:6
|
作者
JOY, MP
SABIR, M
机构
[1] Department of Physics, Cochin University of Science and Technology, Cochin
来源
PRAMANA-JOURNAL OF PHYSICS | 1993年 / 40卷 / 01期
关键词
CHAOS; RIEMANNIAN CURVATURE; LYAPUNOV EXPONENTS;
D O I
10.1007/BF02898037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaotic behaviour of a quartic oscillator system given by H = 1/2(p1(2)+p2(2)) + (1/12)(1 - alpha) (q1(4) + q2(4)) + 1/2q1(2)q2(2) is studied. Though the Riemannian curvature is positive the system is nonintegrable except when alpha = 0. Calculation of maximal Lyapunov exponents indicates a direct correlation between chaos and negative curvature of the potential boundary.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [1] Order and chaos in Hamiltonian systems with quartic coupling
    El Ghamari, Mohammed
    Kharbach, Jaouad
    Chatar, Walid
    Benkhali, Mohamed
    Masrour, Rachid
    Rezzouk, Abdellah
    Jamil, Mohammed Ouazzani
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [2] Order and chaos in Hamiltonian systems with quartic coupling
    Mohammed El Ghamari
    Jaouad Kharbach
    Walid Chatar
    Mohamed Benkhali
    Rachid Masrour
    Abdellah Rezzouk
    Mohammed Ouazzani Jamil
    The European Physical Journal Plus, 137
  • [3] Controlling Hamiltonian chaos via Gaussian curvature
    Oloumi, A
    Teychenné, D
    PHYSICAL REVIEW E, 1999, 60 (06): : R6279 - R6282
  • [4] Separation coordinates in a Hamiltonian quartic system
    Sottocornola, Nicola
    Italian Journal of Pure and Applied Mathematics, 2023, (49): : 560 - 566
  • [5] HAMILTONIAN SCATTERING CHAOS IN A HYDRODYNAMICAL SYSTEM
    JUNG, C
    ZIEMNIAK, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14): : 3929 - 3943
  • [6] New integrable Hamiltonian system with first integral quartic in momenta
    Nakagawa, K
    Maciejewski, AJ
    Przybylska, M
    PHYSICS LETTERS A, 2005, 343 (1-3) : 171 - 173
  • [7] On a Boussinesq Capillarity System: Hamiltonian Reductions and Associated Quartic Geometries
    Rogers, C.
    Schief, W. K.
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (01) : 1 - 12
  • [8] Equivalence of a complex PT-symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly
    Bender, Carl M.
    Brody, Dorje C.
    Chen, Jun-Hua
    Jones, Hugh F.
    Milton, Kimball A.
    Ogilvie, Michael C.
    PHYSICAL REVIEW D, 2006, 74 (02):
  • [9] Hamiltonian chaos and localization in magnetic multilayer system
    Kovács, E
    Kusmartsev, F
    Giles, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (35): : 9391 - 9397
  • [10] Hamiltonian structure of Hamiltonian chaos
    Tang, X.Z.
    Boozer, A.H.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236 (5-6): : 476 - 482