On the invariant method for the time-dependent non-Hermitian Hamiltonians

被引:43
|
作者
Khantoul, B. [1 ]
Bounames, A. [1 ]
Maamache, M. [2 ]
机构
[1] Univ Jijel, Dept Phys, Theoret Phys Lab, BP 98 Ouled Aissa, Jijel 18000, Algeria
[2] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2017年 / 132卷 / 06期
关键词
PSEUDO-HERMITICITY; PT-SYMMETRY; HARMONIC-OSCILLATOR; QUANTUM-MECHANICS; SPECTRUM;
D O I
10.1140/epjp/i2017-11524-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H(t) that generate a real phase in their time evolution. This involves the use of invariant operators IPH(t) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H(t) is generally not quasi-Hermitian and does not define an observable of the system but IPH(t) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-Hermitian Hamiltonians with space-time symmetry
    Klaiman, Shachar
    Cederbaum, Lorenz S.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06):
  • [22] Exact solution for the time-dependent non-Hermitian generalized Swanson oscillator
    Villegas-Martinez, B. M.
    Moya-Cessa, H. M.
    Soto-Eguibar, F.
    [J]. INDIAN JOURNAL OF PHYSICS, 2023, 97 (13) : 3957 - 3963
  • [23] Exact solution for the time-dependent non-Hermitian generalized Swanson oscillator
    B. M. Villegas-Martínez
    H. M. Moya-Cessa
    F. Soto-Eguibar
    [J]. Indian Journal of Physics, 2023, 97 : 3957 - 3963
  • [24] Non-Hermitian Hamiltonians and Similarity Transformations
    Fernandez, Francisco M.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (02) : 843 - 850
  • [25] Time-dependent Darboux (supersymmetric) transformations for non-Hermitian quantum systems
    Cen, Julia
    Fring, Andreas
    Frith, Thomas
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (11)
  • [26] Investigation of a non-Hermitian edge burst with time-dependent perturbation theory
    Wen, Pengyu
    Pi, Jinghui
    Long, Gui-Lu
    [J]. PHYSICAL REVIEW A, 2024, 109 (02)
  • [27] Non-Hermitian Hamiltonians and Similarity Transformations
    Francisco M. Fernández
    [J]. International Journal of Theoretical Physics, 2016, 55 : 843 - 850
  • [28] Spectral curves of non-hermitian hamiltonians
    Feinberg, J
    Zee, A
    [J]. NUCLEAR PHYSICS B, 1999, 552 (03) : 599 - 623
  • [29] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    [J]. PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [30] Positivity representations for non-Hermitian Hamiltonians
    Handy, CR
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (01) : 57 - 65