On the invariant method for the time-dependent non-Hermitian Hamiltonians

被引:43
|
作者
Khantoul, B. [1 ]
Bounames, A. [1 ]
Maamache, M. [2 ]
机构
[1] Univ Jijel, Dept Phys, Theoret Phys Lab, BP 98 Ouled Aissa, Jijel 18000, Algeria
[2] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Phys Quant & Syst Dynam, Setif 19000, Algeria
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2017年 / 132卷 / 06期
关键词
PSEUDO-HERMITICITY; PT-SYMMETRY; HARMONIC-OSCILLATOR; QUANTUM-MECHANICS; SPECTRUM;
D O I
10.1140/epjp/i2017-11524-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H(t) that generate a real phase in their time evolution. This involves the use of invariant operators IPH(t) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H(t) is generally not quasi-Hermitian and does not define an observable of the system but IPH(t) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] RESULTS ON CERTAIN NON-HERMITIAN HAMILTONIANS
    WONG, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (10) : 2039 - &
  • [32] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [33] Symmetries and Invariants for Non-Hermitian Hamiltonians
    Simon, Miguel Angel
    Buendia, Alvaro
    Muga, J. G.
    [J]. MATHEMATICS, 2018, 6 (07):
  • [34] Critical parameters for non-hermitian Hamiltonians
    Fernandez, Francisco M.
    Garcia, Javier
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 141 - 151
  • [35] Time scaling and quantum speed limit in non-Hermitian Hamiltonians
    Impens, F.
    D'Angelis, F. M.
    Pinheiro, F. A.
    Guery-Odelin, D.
    [J]. PHYSICAL REVIEW A, 2021, 104 (05)
  • [36] Homotopy characterization of non-Hermitian Hamiltonians
    Wojcik, Charles C.
    Sun, Xiao-Qi
    Bzdusek, Tomas
    Fan, Shanhui
    [J]. PHYSICAL REVIEW B, 2020, 101 (20)
  • [37] Adiabaticity condition for non-Hermitian Hamiltonians
    Ibanez, S.
    Muga, J. G.
    [J]. PHYSICAL REVIEW A, 2014, 89 (03):
  • [38] Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: From the time-independent to the time-dependent quantum mechanical formulation
    Faria, C. F. M.
    Fring, A.
    [J]. LASER PHYSICS, 2007, 17 (04) : 424 - 437
  • [39] Non-Hermitian time-dependent perturbation theory: Asymmetric transitions and transitionless interactions
    Longhi, Stefano
    Della Valle, Giuseppe
    [J]. ANNALS OF PHYSICS, 2017, 385 : 744 - 756
  • [40] Time-dependent non-Hermitian systems: pseudo-squeezed coherent states
    Elaihar, Lamine
    Koussa, Walid
    Bouguerra, Yacine
    Maamache, Mustapha
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (17)