Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

被引:9
|
作者
Ivanov, D. [1 ,2 ]
Kalashev, O. E. [3 ,4 ,5 ]
Kuznetsov, M. Yu [3 ,6 ]
Rubtsov, G., I [3 ]
Sako, T. [7 ]
Tsunesada, Y. [8 ,9 ]
Zhezher, Y., V [3 ,7 ]
机构
[1] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[3] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[4] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
[5] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[6] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium
[7] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[8] Osaka City Univ, Grad Sch Sci, Osaka, Osaka 5580022, Japan
[9] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys, Osaka, Osaka 5588585, Japan
来源
基金
俄罗斯科学基金会;
关键词
ultra-high energy cosmic rays; machine learning; telescope array observatory; ENERGY COSMIC-RAYS; ARRIVAL DIRECTIONS; FLUORESCENCE DETECTORS; SCALE ANISOTROPY; EEV; DISTANCES; SEARCH; FLUX;
D O I
10.1088/2632-2153/abae74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Correlation Study between Telescope Array Lightning Location System and ground Surface particle Detector
    Okuda, Takeshi
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [42] Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope
    Tsirigotis, A. G.
    Bourlis, G.
    Gizani, N. A. B.
    Leisos, A.
    Tzamarias, S. E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 595 (01): : 80 - 83
  • [43] DeepDT: Learning Geometry From Delaunay Triangulation for Surface Reconstruction
    Luo, Yiming
    Mi, Zhenxing
    Tao, Wenbing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2277 - 2285
  • [44] Event Image Classification using Deep Learning
    Suganthi, S. Regina Lourdhu
    Hanumanthappa, M.
    Kavitha, S.
    IEEE INTERNATIONAL CONFERENCE ON SOFT-COMPUTING AND NETWORK SECURITY (ICSNS 2018), 2018, : 99 - 106
  • [45] RECONSTRUCTION OF TARGET REFLECTING SURFACE USING DIFFERENTIAL GEOMETRY
    MCGILLEM, CD
    THURMAN, LA
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1974, AE10 (06) : 887 - 891
  • [46] Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
    Spencer, S.
    Armstrong, T.
    Watson, J.
    Mangano, S.
    Renier, Y.
    Cotter, G.
    ASTROPARTICLE PHYSICS, 2021, 129
  • [47] Using mobile devices to enhance the interactive learning for spatial geometry
    Chang, Kuo-En
    Wu, Lin-Jung
    Lai, Shing-Chuang
    Sung, Yao-Ting
    INTERACTIVE LEARNING ENVIRONMENTS, 2016, 24 (04) : 916 - 934
  • [48] Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube
    Abbasi, R.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Alispach, C.
    Alves, A. A., Jr.
    Amin, N. M.
    An, R.
    Andeen, K.
    Anderson, T.
    Anton, G.
    Arguelles, C.
    Ashida, Y.
    Axani, S.
    Bai, X.
    Balagopal, A., V
    Barbano, A.
    Barwick, S. W.
    Bastian, B.
    Basu, V.
    Baur, S.
    Bay, R.
    Beatty, J. J.
    Becker, K. -H.
    Tjus, J. Becker
    Bellenghi, C.
    BenZvi, S.
    Berley, D.
    Bernardini, E.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Blaufuss, E.
    Blot, S.
    Boddenberg, M.
    Bontempo, F.
    Borowka, J.
    Boser, S.
    Botner, O.
    Bottcher, J.
    Bourbeau, E.
    Bradascio, F.
    Braun, J.
    Bron, S.
    Brostean-Kaiser, J.
    Browne, S.
    Burgman, A.
    Burley, R. T.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [49] Deep learning based event reconstruction for cyclotron radiation emission spectroscopy
    Esfahani, A. Ashtari
    Boeser, S.
    Buzinsky, N.
    Carmona-Benitez, M. C.
    Cervantes, R.
    Claessens, C.
    de Viveiros, L.
    Fertl, M.
    Formaggio, J. A.
    Gaison, J. K.
    Gladstone, L.
    Grando, M.
    Guigue, M.
    Hartse, J.
    Heeger, K. M.
    Huyan, X.
    Jones, A. M.
    Kazkaz, K.
    Li, M.
    Lindman, A.
    Marsteller, A.
    Matthe, C.
    Mohiuddin, R.
    Monreal, B.
    Morrison, E. C.
    Mueller, R.
    Nikkel, J. A.
    Novitski, E.
    Oblath, N. S.
    Pena, J., I
    Pettus, W.
    Reimann, R.
    Robertson, R. G. H.
    Saldana, L.
    Schram, M.
    Slocum, P. L.
    Stachurska, J.
    Sun, Y-H
    Surukuchi, P. T.
    Telles, A. B.
    Thomas, F.
    Thomas, M.
    Thorne, L. A.
    Thuemmler, T.
    Tvrznikova, L.
    Van De Pontseele, W.
    VanDevender, B. A.
    Weiss, T. E.
    Wendler, T.
    Zayas, E.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [50] Point Cloud Upsampling and Normal Estimation using Deep Learning for Robust Surface Reconstruction
    Sharma, Rajat
    Schwandt, Tobias
    Kunert, Christian
    Urban, Steffen
    Broll, Wolfgang
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 70 - 79