Deep learning based event reconstruction for cyclotron radiation emission spectroscopy

被引:0
|
作者
Esfahani, A. Ashtari [1 ,2 ]
Boeser, S. [3 ]
Buzinsky, N. [4 ]
Carmona-Benitez, M. C. [5 ]
Cervantes, R. [1 ,2 ]
Claessens, C. [1 ,2 ]
de Viveiros, L. [5 ]
Fertl, M. [3 ]
Formaggio, J. A. [4 ]
Gaison, J. K. [6 ]
Gladstone, L. [7 ]
Grando, M. [6 ]
Guigue, M. [6 ]
Hartse, J. [1 ,2 ]
Heeger, K. M. [8 ]
Huyan, X. [6 ]
Jones, A. M. [6 ]
Kazkaz, K. [9 ]
Li, M. [4 ]
Lindman, A. [3 ]
Marsteller, A. [1 ,2 ]
Matthe, C. [3 ]
Mohiuddin, R. [7 ]
Monreal, B. [7 ]
Morrison, E. C. [6 ]
Mueller, R. [5 ]
Nikkel, J. A. [8 ]
Novitski, E. [1 ,2 ]
Oblath, N. S. [6 ]
Pena, J., I [4 ]
Pettus, W. [10 ,11 ]
Reimann, R. [3 ]
Robertson, R. G. H. [1 ,2 ]
Saldana, L. [8 ]
Schram, M. [6 ]
Slocum, P. L. [8 ]
Stachurska, J. [4 ]
Sun, Y-H [7 ]
Surukuchi, P. T. [8 ]
Telles, A. B. [8 ]
Thomas, F. [3 ]
Thomas, M. [6 ]
Thorne, L. A. [3 ]
Thuemmler, T. [12 ]
Tvrznikova, L. [9 ]
Van De Pontseele, W. [4 ]
VanDevender, B. A. [1 ,2 ,6 ]
Weiss, T. E. [8 ]
Wendler, T. [5 ]
Zayas, E. [4 ]
机构
[1] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[4] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[5] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[6] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[7] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[8] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
[9] Lawrence Livermore Natl Lab, Nucl & Chem Sci, Livermore, CA 94550 USA
[10] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA
[11] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[12] Karlsruhe Inst Technol, Inst Astroparticle Phys, D-76021 Karlsruhe, Germany
来源
基金
美国能源部; 美国国家科学基金会;
关键词
neutrino mass; cyclotron radiation; Project; 8; machine learning; deep learning; convolutional neural network; unet;
D O I
10.1088/2632-2153/ad3ee3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of the cyclotron radiation emission spectroscopy (CRES) technology is to build precise particle energy spectra. This is achieved by identifying the start frequencies of charged particle trajectories which, when exposed to an external magnetic field, leave semi-linear profiles (called tracks) in the time-frequency plane. Due to the need for excellent instrumental energy resolution in application, highly efficient and accurate track reconstruction methods are desired. Deep learning convolutional neural networks (CNNs) - particularly suited to deal with information-sparse data and which offer precise foreground localization-may be utilized to extract track properties from measured CRES signals (called events) with relative computational ease. In this work, we develop a novel machine learning based model which operates a CNN and a support vector machine in tandem to perform this reconstruction. A primary application of our method is shown on simulated CRES signals which mimic those of the Project 8 experiment-a novel effort to extract the unknown absolute neutrino mass value from a precise measurement of tritium beta --decay energy spectrum. When compared to a point-clustering based technique used as a baseline, we show a relative gain of 24.1% in event reconstruction efficiency and comparable performance in accuracy of track parameter reconstruction.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Cyclotron Radiation Emission Spectroscopy
    Oblath, Noah S.
    VanDevender, Brent A.
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2024, 74 : 447 - 472
  • [2] Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8
    Esfahani, A. Ashtari
    Boeser, S.
    Buzinsky, N.
    Cervantes, R.
    Claessens, C.
    de Viveiros, L.
    Fertl, M.
    Formaggio, J. A.
    Gladstone, L.
    Guigue, M.
    Heeger, K. M.
    Johnston, J.
    Jones, A. M.
    Kazkaz, K.
    LaRoque, B. H.
    Lindman, A.
    Machado, E.
    Monreal, B.
    Morrison, E. C.
    Nikkel, J. A.
    Novitski, E.
    Oblath, N. S.
    Pettus, W.
    Robertson, R. G. H.
    Rybka, G.
    Saldana, L.
    Sibille, V
    Schram, M.
    Slocum, P. L.
    Sun, Y-H
    Thuemmler, T.
    VanDevender, B. A.
    Weiss, T. E.
    Wendler, T.
    Zayas, E.
    NEW JOURNAL OF PHYSICS, 2020, 22 (03):
  • [3] Deep learning based event reconstruction for Limadou HEPD
    Follega, Francesco Maria
    Cristoforetti, Marco
    Iuppa, Roberto
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [4] Electron radiated power in cyclotron radiation emission spectroscopy experiments
    Esfahani, A. Ashtari
    Bansal, V
    Boeser, S.
    Buzinsky, N.
    Cervantes, R.
    Claessens, C.
    de Viveiros, L.
    Doe, P. J.
    Fertl, M.
    Formaggio, J. A.
    Gladstone, L.
    Guigue, M.
    Heeger, K. M.
    Johnston, J.
    Jones, A. M.
    Kazkaz, K.
    LaRoque, B. H.
    Leber, M.
    Lindman, A.
    Machado, E.
    Monreal, B.
    Morrison, E. C.
    Nikkel, J. A.
    Novitski, E.
    Oblath, N. S.
    Pettus, W.
    Robertson, R. G. H.
    Rybka, G.
    Saldana, L.
    Sibille, V
    Schram, M.
    Slocum, P. L.
    Sun, Y-H
    Tedeschi, J. R.
    Thuemmler, T.
    VanDevender, B. A.
    Wachtendonk, M.
    Walter, M.
    Weiss, T. E.
    Wendler, T.
    Zayas, E.
    PHYSICAL REVIEW C, 2019, 99 (05)
  • [5] Deep Learning-Based Spectrum Reconstruction Method for Raman Spectroscopy
    Zhou, Qian
    Zou, Zhiyong
    Han, Lin
    COATINGS, 2022, 12 (08)
  • [6] Cyclotron radiation and emission in graphene
    Morimoto, Takahiro
    Hatsugai, Yasuhiro
    Aoki, Hideo
    PHYSICAL REVIEW B, 2008, 78 (07):
  • [7] Deep learning based event reconstruction for the Limadou High-Energy Particle Detector
    Bartocci, S.
    Battiston, R.
    Benotto, F.
    Beole, S.
    Burger, W. J.
    Campana, D.
    Castellini, G.
    Cipollone, P.
    Coli, S.
    Conti, L.
    Contin, A.
    Cristoforetti, M.
    de Cilladi, L.
    De Donato, C.
    De Santis, C.
    Follega, F. M.
    Gebbia, G.
    Iuppa, R.
    Lolli, M.
    Marcelli, N.
    Martucci, M.
    Masciantonio, G.
    Merge, M.
    Mese, M.
    Neubuser, C.
    Nozzoli, F.
    Oliva, A.
    Osteria, G.
    Pacini, L.
    Palma, F.
    Palmonari, F.
    Parmentier, A.
    Perfetto, F.
    Picozza, P.
    Piersanti, M.
    Pozzato, M.
    Ricci, E.
    Ricci, M.
    Ricciarini, S. B.
    Sahnoun, Z.
    Scotti, V
    Sotgiu, A.
    Sparvoli, R.
    Vitale, V.
    Zoffoli, S.
    Zuccon, P.
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [8] Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8
    Esfahani, Ali Ashtari
    Asner, David M.
    Boeser, Sebastian
    Cervantes, Raphael
    Claessens, Christine
    de Viveiros, Luiz
    Doe, Peter J.
    Doeleman, Shepard
    Fernandes, Justin L.
    Fertl, Martin
    Finn, Erin C.
    Formaggio, Joseph A.
    Furse, Daniel
    Guigue, Mathieu
    Heeger, Karsten M.
    Jones, A. Mark
    Kazkaz, Kareem
    Kofron, Jared A.
    Lamb, Callum
    LaRoque, Benjamin H.
    Machado, Eric
    McBride, Elizabeth L.
    Miller, Michael L.
    Monreal, Benjamin
    Mohanmurthy, Prajwal
    Nikkel, James A.
    Oblath, Noah S.
    Pettus, Walter C.
    Robertson, R. G. Hamish
    Rosenberg, Leslie J.
    Rybka, Gray
    Rysewyk, Devyn
    Saldana, Luis
    Slocum, Penny L.
    Sternberg, Matthew G.
    Tedeschi, Jonathan R.
    Thuemmler, Thomas
    VanDevender, Brent A.
    Vertatschitsch, Laura E.
    Wachtendonk, Megan
    Weintroub, Jonathan
    Woods, Natasha L.
    Young, Andre
    Zayas, Evan M.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (05)
  • [9] Deep learning-based spatiotemporal multi-event reconstruction for delay line detectors
    Knipfer, Marco
    Meier, Stefan
    Volk, Tobias
    Heimerl, Jonas
    Hommelhoff, Peter
    Gleyzer, Sergei
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [10] CAN THE JUPITER EMISSION BE CYCLOTRON RADIATION
    FIELD, GB
    ASTRONOMICAL JOURNAL, 1961, 66 (07): : 283 - 283