Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

被引:9
|
作者
Ivanov, D. [1 ,2 ]
Kalashev, O. E. [3 ,4 ,5 ]
Kuznetsov, M. Yu [3 ,6 ]
Rubtsov, G., I [3 ]
Sako, T. [7 ]
Tsunesada, Y. [8 ,9 ]
Zhezher, Y., V [3 ,7 ]
机构
[1] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[3] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[4] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
[5] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[6] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium
[7] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[8] Osaka City Univ, Grad Sch Sci, Osaka, Osaka 5580022, Japan
[9] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys, Osaka, Osaka 5588585, Japan
来源
基金
俄罗斯科学基金会;
关键词
ultra-high energy cosmic rays; machine learning; telescope array observatory; ENERGY COSMIC-RAYS; ARRIVAL DIRECTIONS; FLUORESCENCE DETECTORS; SCALE ANISOTROPY; EEV; DISTANCES; SEARCH; FLUX;
D O I
10.1088/2632-2153/abae74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimal surface defect detector design based on deep learning for 3D geometry
    Suh, Sangmin
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] Upper limit on the flux of photons with energies above 1019 eV using the Telescope Array surface detector
    Abu-Zayyad, T.
    Aida, R.
    Allen, M.
    Anderson, R.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    Cho, E. J.
    Cho, W. R.
    Fujii, H.
    Fujii, T.
    Fukuda, T.
    Fukushima, M.
    Gorbunov, D.
    Hanlon, W.
    Hayashi, K.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Hiyama, K.
    Honda, K.
    Iguchi, T.
    Ikeda, D.
    Ikuta, K.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ivanov, D.
    Iwamoto, S.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kanbe, T.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kido, E.
    Kim, H. B.
    Kim, H. K.
    Kim, J. H.
    Kim, J. H.
    Kitamoto, K.
    PHYSICAL REVIEW D, 2013, 88 (11):
  • [23] Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector
    R. U. Abbasi
    M. Abe
    T. Abu-Zayyad
    M. Allen
    R. Azuma
    E. Barcikowski
    J. W. Belz
    D. R. Bergman
    S. A. Blake
    R. Cady
    B. G. Cheon
    J. Chiba
    M. Chikawa
    A. di Matteo
    T. Fujii
    K. Fujita
    R. Fujiwara
    M. Fukushima
    G. Furlich
    W. Hanlon
    M. Hayashi
    Y. Hayashi
    N. Hayashida
    K. Hibino
    K. Honda
    D. Ikeda
    N. Inoue
    T. Ishii
    R. Ishimori
    H. Ito
    D. Ivanov
    H. M. Jeong
    S. Jeong
    C. C. H. Jui
    K. Kadota
    F. Kakimoto
    O. Kalashev
    K. Kasahara
    H. Kawai
    S. Kawakami
    S. Kawana
    K. Kawata
    E. Kido
    H. B. Kim
    J. H. Kim
    J. H. Kim
    S. Kishigami
    S. Kitamura
    Y. Kitamura
    V. Kuzmin
    Journal of Experimental and Theoretical Physics, 2020, 131 : 255 - 264
  • [24] Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector
    Abbasi, R. U.
    Abe, M.
    Abu-Zayyad, T.
    Allen, M.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    di Matteo, A.
    Fujii, T.
    Fujita, K.
    Fujiwara, R.
    Fukushima, M.
    Furlich, G.
    Hanlon, W.
    Hayashi, M.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Honda, K.
    Ikeda, D.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ito, H.
    Ivanov, D.
    Jeong, H. M.
    Jeong, S.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kawata, K.
    Kido, E.
    Kim, H. B.
    Kim, J. H.
    Kim, J. H.
    Kishigami, S.
    Kitamura, S.
    Kitamura, Y.
    Kuzmin, V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 131 (02) : 255 - 264
  • [25] Deep learning based event reconstruction for Limadou HEPD
    Follega, Francesco Maria
    Cristoforetti, Marco
    Iuppa, Roberto
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [26] Constraints on the diffuse photon flux with energies above 1018 eV using the surface detector of the Telescope Array experiment
    Abbasi, R. U.
    Abe, M.
    Abu-Zayyad, T.
    Allen, M.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    di Matteo, A.
    Fujii, T.
    Fujita, K.
    Fukushima, M.
    Furlich, G.
    Goto, T.
    Hanlon, W.
    Hayashi, M.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Honda, K.
    Ikeda, D.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ito, H.
    Ivanov, D.
    Jeong, H. M.
    Jeong, S.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kawata, K.
    Kido, E.
    Kim, H. B.
    Kim, J. H.
    Kim, J. H.
    Kishigam, S.
    Kitamura, S.
    Kitamura, Y.
    Kuzmin, V.
    ASTROPARTICLE PHYSICS, 2019, 110 : 8 - 14
  • [27] Fast cortical surface reconstruction from MRI using deep learning
    Ren, Jianxun
    Hu, Qingyu
    Wang, Weiwei
    Zhang, Wei
    Hubbard, Catherine S.
    Zhang, Pingjia
    An, Ning
    Zhou, Ying
    Dahmani, Louisa
    Wang, Danhong
    Fu, Xiaoxuan
    Sun, Zhenyu
    Wang, Yezhe
    Wang, Ruiqi
    Li, Luming
    Liu, Hesheng
    BRAIN INFORMATICS, 2022, 9 (01)
  • [28] THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT
    Abu-Zayyad, T.
    Aida, R.
    Allen, M.
    Anderson, R.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    Cho, E. J.
    Cho, W. R.
    Fujii, H.
    Fujii, T.
    Fukuda, T.
    Fukushima, M.
    Hanlon, W.
    Hayashi, K.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Hiyama, K.
    Honda, K.
    Iguchi, T.
    Ikeda, D.
    Ikuta, K.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ivanov, D.
    Iwamoto, S.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kanbe, T.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kido, E.
    Kim, H. B.
    Kim, H. K.
    Kim, J. H.
    Kim, J. H.
    Kitamoto, K.
    Kitamura, S.
    ASTROPHYSICAL JOURNAL LETTERS, 2013, 768 (01)
  • [29] Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector
    Glaser, Christian
    McAleer, Stephen
    Baldi, Pierre
    Barwick, Steven
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [30] Deep-learning-driven event reconstruction applied to simulated data from a single Large-Sized Telescope of CTA
    Grespan, P.
    Jacquemont, M.
    Lopez-Coto, R.
    Miener, T.
    Nieto-Castano, D.
    Vuillaume, T.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,