Simultaneous multislice imaging for native myocardial T1 mapping: Improved spatial coverage in a single breath-hold

被引:35
|
作者
Weingaertner, Sebastian [1 ,2 ,3 ]
Moeller, Steen [2 ]
Schmitter, Sebastian [2 ,4 ]
Auerbach, Edward [2 ]
Kellman, Peter [5 ]
Shenoy, Chetan [6 ]
Akcakaya, Mehmet [1 ,2 ]
机构
[1] Univ Minnesota, Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[3] Heidelberg Univ, Univ Med Ctr Mannheim, Comp Assisted Clin Med, Mannheim, Germany
[4] Phys Tech Bundesanstalt, Med Phys & Metrol Informat Technol, Berlin, Germany
[5] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[6] Univ Minnesota, Dept Med, Div Cardiovasc, Box 736 UMHC, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
myocardial T-1 mapping; simultaneous multislice imaging; multiband; saturation recovery; SAPPHIRE; SPOILED GRADIENT-ECHO; INVERSION-RECOVERY; MOTION CORRECTION; TISSUE CHARACTERIZATION; T1; QUANTIFICATION; RESOLUTION; ACCURACY; HEART; MOLLI;
D O I
10.1002/mrm.26770
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop a saturation recovery myocardial T-1 mapping method for the simultaneous multislice acquisition of three slices. MethodsSaturation pulse-prepared heart rate independent inversion recovery (SAPPHIRE) T-1 mapping was implemented with simultaneous multislice imaging using FLASH readouts for faster coverage of the myocardium. Controlled aliasing in parallel imaging (CAIPI) was used to achieve minimal noise amplification in three slices. Multiband reconstruction was performed using three linear reconstruction methods: Slice- and in-plane GRAPPA, CG-SENSE, and Tikhonov-regularized CG-SENSE. Accuracy, spatial variability, and interslice leakage were compared with single-band T-1 mapping in a phantom and in six healthy subjects. ResultsMultiband phantom T-1 times showed good agreement with single-band T-1 mapping for all three reconstruction methods (normalized root mean square error <1.0%). The increase in spatial variability compared with single-band imaging was lowest for GRAPPA (1.29-fold), with higher penalties for Tikhonov-regularized CG-SENSE (1.47-fold) and CG-SENSE (1.52-fold). In vivo multiband T-1 times showed no significant difference compared with single-band (T-1 timeintersegmental variability: single-band, 1580 +/- 119 ms; GRAPPA, 1572 +/- 145 ms; CG-SENSE, 1579 +/- 159 ms; Tikhonov, 1586 +/- 150 ms [analysis of variance; P=0.86]). Interslice leakage was smallest for GRAPPA (5.4%) and higher for CG-SENSE (6.2%) and Tikhonov-regularized CG-SENSE (7.9%). ConclusionMultiband accelerated myocardial T-1 mapping demonstrated the potential for single-breath-hold T-1 quantification in 16 American Heart Association segments over three slices. A 1.2- to 1.4-fold higher in vivo spatial variability was observed, where GRAPPA-based reconstruction showed the highest homogeneity and the least interslice leakage. Magn Reson Med 78:462-471, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:462 / 471
页数:10
相关论文
共 50 条
  • [21] Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence
    Weingaertner, Sebastian
    Roujol, Sebastien
    Akcakaya, Mehmet
    Basha, Tamer A.
    Nezafat, Reza
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (01) : 115 - 124
  • [22] Retrogated spiral 3-directional myocardial phase velocity mapping in a single breath-hold
    Robin Simpson
    Jennifer Keegan
    Peter D Gatehouse
    David N Firmin
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [23] Retrogated spiral 3-directional myocardial phase velocity mapping in a single breath-hold
    Robin Simpson
    Jennifer Keegan
    Peter D Gatehouse
    David N Firmin
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [24] Single breath-hold 3D mapping of T1 and T2 relaxation times with 3D-QALAS - feasibility in patients
    Sofia Kvernby
    Marcel Warntjes
    Carl Johan Carlhall
    Jan E Engvall
    Tino Ebbers
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [25] Native Myocardial T1 Mapping, Are We There Yet?
    Hamdy, Ahmed
    Kitagawa, Kakuya
    Ishida, Masaki
    Sakuma, Hajime
    INTERNATIONAL HEART JOURNAL, 2016, 57 (04) : 400 - 407
  • [26] Native myocardial T1 mapping: influence of spatial resolution on quantitative results and reproducibility
    Dalmer, Antonia
    Meinel, Felix G.
    Boettcher, Benjamin
    Manzke, Mathias
    Lorbeer, Roberto
    Weber, Marc-Andre
    Baessler, Bettina
    Klemenz, Ann-Christin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (01) : 20 - 30
  • [27] Comparison of the colon with T1 breath-hold vs T1 free-breathing-A retrospective fetal MRI study
    Dovjak, G. O.
    Kanbur, I.
    Prayer, F.
    Brugger, P. C.
    Gruber, G. M.
    Weber, M.
    Stuhr, F.
    Ulm, B.
    Kasprian, G. J.
    Prayer, D.
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 134
  • [28] Dynamic Glucose-Enhanced Imaging of the Liver Using Breath-Hold Black Blood Quantitative T1ρ MRI at 3.0 T
    Qian, Yurui
    Wong, Vincent W. S.
    Wang, Yi-Xiang
    Hou, Jian
    Jiang, Baiyan
    Zhang, Xinrong
    Wong, Grace L. H.
    Chan, Queenie
    Yu, Simon C. H.
    Chu, Winnie C. W.
    Chen, Weitian
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (03) : 1107 - 1109
  • [29] Quantitative assessment of myocardial edema using a breath-hold T2 mapping pulse sequence
    Mansi Shah
    Monvadi B Srichai
    Daniel Kim
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [30] Rapid T1 mapping using multislice echo planar imaging
    Clare, S
    Jezzard, P
    MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (04) : 630 - 634