共 50 条
Simultaneous multislice imaging for native myocardial T1 mapping: Improved spatial coverage in a single breath-hold
被引:35
|作者:
Weingaertner, Sebastian
[1
,2
,3
]
Moeller, Steen
[2
]
Schmitter, Sebastian
[2
,4
]
Auerbach, Edward
[2
]
Kellman, Peter
[5
]
Shenoy, Chetan
[6
]
Akcakaya, Mehmet
[1
,2
]
机构:
[1] Univ Minnesota, Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[3] Heidelberg Univ, Univ Med Ctr Mannheim, Comp Assisted Clin Med, Mannheim, Germany
[4] Phys Tech Bundesanstalt, Med Phys & Metrol Informat Technol, Berlin, Germany
[5] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[6] Univ Minnesota, Dept Med, Div Cardiovasc, Box 736 UMHC, Minneapolis, MN 55455 USA
基金:
美国国家卫生研究院;
关键词:
myocardial T-1 mapping;
simultaneous multislice imaging;
multiband;
saturation recovery;
SAPPHIRE;
SPOILED GRADIENT-ECHO;
INVERSION-RECOVERY;
MOTION CORRECTION;
TISSUE CHARACTERIZATION;
T1;
QUANTIFICATION;
RESOLUTION;
ACCURACY;
HEART;
MOLLI;
D O I:
10.1002/mrm.26770
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeTo develop a saturation recovery myocardial T-1 mapping method for the simultaneous multislice acquisition of three slices. MethodsSaturation pulse-prepared heart rate independent inversion recovery (SAPPHIRE) T-1 mapping was implemented with simultaneous multislice imaging using FLASH readouts for faster coverage of the myocardium. Controlled aliasing in parallel imaging (CAIPI) was used to achieve minimal noise amplification in three slices. Multiband reconstruction was performed using three linear reconstruction methods: Slice- and in-plane GRAPPA, CG-SENSE, and Tikhonov-regularized CG-SENSE. Accuracy, spatial variability, and interslice leakage were compared with single-band T-1 mapping in a phantom and in six healthy subjects. ResultsMultiband phantom T-1 times showed good agreement with single-band T-1 mapping for all three reconstruction methods (normalized root mean square error <1.0%). The increase in spatial variability compared with single-band imaging was lowest for GRAPPA (1.29-fold), with higher penalties for Tikhonov-regularized CG-SENSE (1.47-fold) and CG-SENSE (1.52-fold). In vivo multiband T-1 times showed no significant difference compared with single-band (T-1 timeintersegmental variability: single-band, 1580 +/- 119 ms; GRAPPA, 1572 +/- 145 ms; CG-SENSE, 1579 +/- 159 ms; Tikhonov, 1586 +/- 150 ms [analysis of variance; P=0.86]). Interslice leakage was smallest for GRAPPA (5.4%) and higher for CG-SENSE (6.2%) and Tikhonov-regularized CG-SENSE (7.9%). ConclusionMultiband accelerated myocardial T-1 mapping demonstrated the potential for single-breath-hold T-1 quantification in 16 American Heart Association segments over three slices. A 1.2- to 1.4-fold higher in vivo spatial variability was observed, where GRAPPA-based reconstruction showed the highest homogeneity and the least interslice leakage. Magn Reson Med 78:462-471, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:462 / 471
页数:10
相关论文