Paving Spin-Wave Fibers in Magnonic Nanocircuits Using Spin-Orbit Torque

被引:18
|
作者
Xing, Xiangjun [1 ,2 ]
Pong, Philip W. T. [2 ]
Akerman, J. [3 ,4 ]
Zhou, Yan [5 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Univ Gothenburg, Dept Phys, Fys Grand 3, S-41296 Gothenburg, Sweden
[4] KTH Royal Inst Technol, Mat & Nano Phys, Sch ICT, S-16440 Kista, Sweden
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2017年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
CURRENT-DRIVEN DYNAMICS; MAGNETIC DOMAIN-WALLS; SKYRMION; MOTION; SYMMETRY;
D O I
10.1103/PhysRevApplied.7.054016
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent studies reveal that domain walls in magnetic nanostructures can serve as compact, energy-efficient spin-wave waveguides for building magnonic devices that are considered promising candidates for overcoming the challenges and bottlenecks of today's CMOS technologies. However, imprinting long strip-domain walls into magnetic nanowires remains a challenge, especially in bent geometries. Here, through micromagnetic simulations, we present a method for writing strip-domain walls into bent magnetic nanowires using spin-orbit torque. We employ Y-shaped magnetic nanostructures as well as an S-shaped magnetic nanowire to demonstrate the injection process. In addition, we verify that the Y-shaped nanostructures that incorporate strip-domain walls can function as superb spin-wave multiplexers and that spin-wave propagation along each conduit can be controllably manipulated. This spin-wave multiplexer based on strip-domain walls is expected to become a key signal-processing component in magnon spintronics.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Detection of spin-orbit torque with spin rotation symmetry
    Wang, Tao
    Lendinez, Sergi
    Jungfleisch, M. Benjamin
    Kolodzey, James
    Xiao, John Q.
    Fan, Xin
    APPLIED PHYSICS LETTERS, 2020, 116 (01)
  • [22] Excitation and Amplification of Spin Waves by Spin-Orbit Torque
    Divinskiy, Boris
    Demidov, Vladislav E.
    Urazhdin, Sergei
    Freeman, Ryan
    Rinkevich, Anatoly B.
    Demokritov, Sergej O.
    ADVANCED MATERIALS, 2018, 30 (33)
  • [23] Theory of spin torque due to spin-orbit coupling
    Manchon, A.
    Zhang, S.
    PHYSICAL REVIEW B, 2009, 79 (09)
  • [24] Microscopic theory of spin-orbit torque and spin memory loss from interfacial spin-orbit coupling
    Zhang, Xian-Peng
    Yao, Yugui
    Wang, Kai You
    Yan, Peng
    PHYSICAL REVIEW B, 2023, 108 (12)
  • [25] Spin-Orbit Torque and Geometrical Backscattering
    Tan, Seng Ghee
    Huang, Che-Chun
    Jalil, Mansoor B. A.
    Chang, Ching-Ray
    Cheng, Szu-Cheng
    SPIN, 2024, 14 (03)
  • [26] Manipulation of Magnetization by Spin-Orbit Torque
    Li, Yucai
    Edmonds, Kevin William
    Liu, Xionghua
    Zheng, Houzhi
    Wang, Kaiyou
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)
  • [27] Flexible spin-orbit torque devices
    Lee, OukJae
    You, Long
    Jang, Jaewon
    Subramanian, Vivek
    Salahuddin, Sayeef
    APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [28] Thermal spin-orbit torque in spintronics
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (01):
  • [29] Spin-orbit torque characterization in a nutshell
    Nguyen, Minh-Hai
    Pai, Chi-Feng
    APL MATERIALS, 2021, 9 (03)
  • [30] Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque
    M. Collet
    X. de Milly
    O. d’Allivy Kelly
    V. V. Naletov
    R. Bernard
    P. Bortolotti
    J. Ben Youssef
    V. E. Demidov
    S. O. Demokritov
    J. L. Prieto
    M. Muñoz
    V. Cros
    A. Anane
    G. de Loubens
    O. Klein
    Nature Communications, 7