Paving Spin-Wave Fibers in Magnonic Nanocircuits Using Spin-Orbit Torque

被引:18
|
作者
Xing, Xiangjun [1 ,2 ]
Pong, Philip W. T. [2 ]
Akerman, J. [3 ,4 ]
Zhou, Yan [5 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Univ Gothenburg, Dept Phys, Fys Grand 3, S-41296 Gothenburg, Sweden
[4] KTH Royal Inst Technol, Mat & Nano Phys, Sch ICT, S-16440 Kista, Sweden
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2017年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
CURRENT-DRIVEN DYNAMICS; MAGNETIC DOMAIN-WALLS; SKYRMION; MOTION; SYMMETRY;
D O I
10.1103/PhysRevApplied.7.054016
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent studies reveal that domain walls in magnetic nanostructures can serve as compact, energy-efficient spin-wave waveguides for building magnonic devices that are considered promising candidates for overcoming the challenges and bottlenecks of today's CMOS technologies. However, imprinting long strip-domain walls into magnetic nanowires remains a challenge, especially in bent geometries. Here, through micromagnetic simulations, we present a method for writing strip-domain walls into bent magnetic nanowires using spin-orbit torque. We employ Y-shaped magnetic nanostructures as well as an S-shaped magnetic nanowire to demonstrate the injection process. In addition, we verify that the Y-shaped nanostructures that incorporate strip-domain walls can function as superb spin-wave multiplexers and that spin-wave propagation along each conduit can be controllably manipulated. This spin-wave multiplexer based on strip-domain walls is expected to become a key signal-processing component in magnon spintronics.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Spin-orbit torque-driven propagating spin waves
    Fulara, H.
    Zahedinejad, M.
    Khymyn, R.
    Awad, A. A.
    Muralidhar, S.
    Dvornik, M.
    Akerman, J.
    SCIENCE ADVANCES, 2019, 5 (09):
  • [42] Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
    Abert, Claas
    Bruckner, Florian
    Vogler, Christoph
    Suess, Dieter
    AIP ADVANCES, 2018, 8 (05)
  • [43] Spin-Transfer versus Spin-Orbit Torque MRAM
    Narayanapillai, Kulothungasagaran
    Qiu, Xuepeng
    Wang, Yi
    Kwon, Jaehyun
    Yu, Jiawei
    Loong, Li Ming
    Legrand, William
    Yoon, Jungbum
    Banerjee, Karan
    Yang, Hyunsoo
    7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,
  • [44] Spin-wave intermodal coupling in the interconnection of magnonic units
    Sadovnikov, A. V.
    Grachev, A. A.
    Gubanov, V. A.
    Odintsov, S. A.
    Martyshkin, A. A.
    Sheshukova, S. E.
    Sharaevskii, Yu. P.
    Nikitov, S. A.
    APPLIED PHYSICS LETTERS, 2018, 112 (14)
  • [45] Spin-wave modes in a CoFeB magnonic crystal waveguide
    Mansurova, M.
    Muenzenberg, M.
    ULTRAFAST MAGNETISM I, 2015, 159 : 103 - 105
  • [46] Terahertz spin dynamics driven by an optical spin-orbit torque
    Mondal, Ritwik
    Donges, Andreas
    Nowak, Ulrich
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [47] Magnonic spin-wave modes in CoFeB antidot lattices
    Ulrichs, Henning
    Lenk, Benjamin
    Muenzenberg, Markus
    APPLIED PHYSICS LETTERS, 2010, 97 (09)
  • [48] Spin-wave nonreciprocity based on interband magnonic transitions
    Di, K.
    Lim, H. S.
    Zhang, V. L.
    Ng, S. C.
    Kuok, M. H.
    APPLIED PHYSICS LETTERS, 2013, 103 (13)
  • [49] Spontaneous Exact Spin-Wave Fractals in Magnonic Crystals
    Richardson, Daniel
    Kalinikos, Boris A.
    Carr, Lincoln D.
    Wu, Mingzhong
    PHYSICAL REVIEW LETTERS, 2018, 121 (10)
  • [50] Unidirectional spin-wave edge modes in magnonic crystal
    Feilhauer, J.
    Zelent, M.
    Zhang, Zhiwang
    Christensen, J.
    Mruczkiewicz, M.
    APL MATERIALS, 2023, 11 (02)