Spin-orbit torque characterization in a nutshell

被引:21
|
作者
Nguyen, Minh-Hai [1 ]
Pai, Chi-Feng [2 ]
机构
[1] Raytheon BBN Technol, Cambridge, MA 02138 USA
[2] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
关键词
Error sources - Magnetic dynamics - Magnetic heterostructures - Nano scale - Spin currents - Spin orbit interactions - Spin orbits - Spin torque;
D O I
10.1063/5.0041123
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spin current and spin torque generation through the spin-orbit interactions in solids, of bulk or interfacial origin, is at the heart of spintronics research. The realization of spin-orbit torque (SOT) driven magnetic dynamics and switching in diverse magnetic heterostructures also pave the way for developing SOT magnetoresistive random access memory and other novel SOT memory and logic devices. Of scientific and technological importance are accurate and efficient SOT quantification techniques, which have been abundantly developed in the last decade. In this article, we summarize popular techniques to experimentally quantify SOTs in magnetic heterostructures at micro- and nano-scale. For each technique, we give an overview of its principle, variations, strengths, shortcomings, error sources, and any cautions in usage. Finally, we discuss the remaining challenges in understanding and quantifying the SOTs in heterostructures.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):
  • [2] Spin-orbit torque in antiferromagnets
    Song, C.
    Zhou, X.
    Chen, X.
    Zhang, P.
    Shi, G.
    Pan, F.
    [J]. 2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [3] Interfacial spin-orbit torque without bulk spin-orbit coupling
    Emori, Satoru
    Nan, Tianxiang
    Belkessam, Amine M.
    Wang, Xinjun
    Matyushov, Alexei D.
    Babroski, Christopher J.
    Gao, Yuan
    Lin, Hwaider
    Sun, Nian X.
    [J]. PHYSICAL REVIEW B, 2016, 93 (18)
  • [4] Spin-Orbit Torque and Geometrical Backscattering
    Tan, Seng Ghee
    Huang, Che-Chun
    Jalil, Mansoor B. A.
    Chang, Ching-Ray
    Cheng, Szu-Cheng
    [J]. SPIN, 2024, 14 (03)
  • [5] Manipulation of Magnetization by Spin-Orbit Torque
    Li, Yucai
    Edmonds, Kevin William
    Liu, Xionghua
    Zheng, Houzhi
    Wang, Kaiyou
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)
  • [6] Flexible spin-orbit torque devices
    Lee, OukJae
    You, Long
    Jang, Jaewon
    Subramanian, Vivek
    Salahuddin, Sayeef
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [7] Thermal spin-orbit torque in spintronics
    Wang, Zheng-Chuan
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (01):
  • [8] Multilevel Spin-Orbit Torque MRAMs
    Kim, Yusung
    Fong, Xuanyao
    Kwon, Kon-Woo
    Chen, Mei-Chin
    Roy, Kaushik
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 561 - 568
  • [9] Giant, Linearly Increasing Spin-Orbit Torque Efficiency in Symmetry-Broken Spin-Orbit Torque Superlattices
    Lin, Xin
    Zhu, Lujun
    Liu, Qianbiao
    Zhu, Lijun
    [J]. NANO LETTERS, 2023, 23 (20) : 9420 - 9427
  • [10] Intrinsic spin torque without spin-orbit coupling
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    Lee, Hyun-Woo
    Stiles, M. D.
    [J]. PHYSICAL REVIEW B, 2015, 92 (22)